

Current Sensing

RESISTOR ==

PRODUCT

CATALOG

Π

I C&B Electronics

C&B Electronics is a world-class innovative enterprise that provides from passive components to module. Since founded in 2006, C&B Electronics has gradually formed a "non-traditional" manufacturing enterprise with a vertical industrial chain covering R&D and manufacturing of high-end raw materials, core EB welding equipment, electronic components, module level current sensors and heating parts, serving various industries of high-end manufacturing worldwide.

I RESI

Founded in 2006, it is a high-end resistor brand under C&B Electronics, representing "quality" and "service". C&B is committed to building a domestic resistor benchmark enterprise and providing resistor products with high quality, reasonable price, and stable delivery to global engineers.

Qualifications

National Level Specialization and Special New Small Giants

National High-Tech Enterprise

Guangdong Provincial Automotive **High Precision Resistor Engineering Research Center**

ISO9001

ISO45001 ISO14001 ISO27001

National Standard Drafting Unit

All four factories in Shenzhen, Changsha, Suzhou, Guilin have passed the IATF16949 certified by TUV.

Laboratory accreditation certificate of China National Accreditation Committee for Conformity Assessment

Automotive current sensors with functional safety have passed ISO 26262:2018; ASIL C, certified by UL.

DUNS Registration

Company Distribution

Shenzhen

5000 m²

Sales & Technical Supports Advanced Measurement Center **RESIMALL E-Commerce Platform**

Guilin 15000 m²

EB Welding Equipment Incoming Processing Services

Changsha

8000 m²

AEC-Q Laboratory R&D & Manufacturing

Alloy Raw Materials

Suzhou 13000 m²

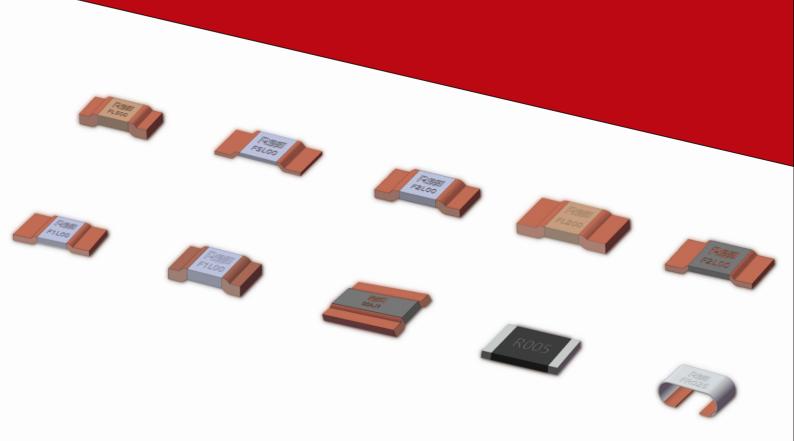
Intelligent Manufacturing Factory

Hong Kong

Logistics Center

Catalogue

$PCSR2512 Molded \\ Alloy \\ Current \\ Sensing \\ Resistance: 5m\Omega \sim 100 \\ m\Omega Tolerance: \pm 0.1\% TCR: \pm 15 \\ ppm/^{\circ}C \dots \\ Note \\ Sensing \\ Se$	02-13
$\label{eq:product} PCSK2512 \mbox{Molded Alloy Current Sensing Resistor} \mbox{Resistance:} 5m\Omega \sim 100 \mbox{m}\Omega \mbox{Tolerance:} \pm 0.5\% \mbox{TCR:} \pm 25 \mbox{ppm/}^{\circ}\mbox{C} \mbox{Common sensing Resistor} \mbox{Resistance:} 5m\Omega \sim 100 \mbox{m}\Omega \mbox{Tolerance:} \pm 0.5\% \mbox{TCR:} \pm 25 \mbox{ppm/}^{\circ}\mbox{C} \mbox{C} C$	14-24
$EBWM2512 \text{Alloy Current Sensing Resistor} \text{Resistance:} 0.3 \text{m}\Omega \sim 1 \text{m}\Omega \text{Tolerance:} \pm 0.5\% \text{TCR:} \pm 200 \text{ppm/°C} \dots \dots \dots \dots \dots \dots \dots \dots \dots $	25-34
$EBWK2512 \text{Alloy Current Sensing Resistor} \text{Resistance:} 2m\Omega \sim 5m\Omega \text{Tolerance:} \pm 0.5\% \text{TCR:} \pm 100 \text{ppm/}^{\circ}\text{C} \dots \dots \dots \dots \dots \dots \dots \dots \dots $	35-44
$PEWF2512 Alloy Current Sensing Resistor Resistance: 1.5 m \Omega \sim 5 m \Omega Tolerance: \pm 0.5\% TCR: \pm 50 ppm/^{\circ}C \dots Dresistance: 1.5 m \Omega \sim 5 m \Omega \sim 5 m \Omega $	45-54
$SEWF2512 Alloy Current Sensing Resistor Resistance: 3m\Omega \sim 5m\Omega Tolerance: \pm 0.5\% TCR: \pm 25ppm/^{\circ}C \dots \dots \dots \dots \dots \dots \dots \dots \dots $	55-64
$PEWM3920 Alloy Current Sensing Resistor Resistance: 0.2 m \Omega \sim 1 m \Omega Tolerance: \pm 0.5\% TCR: \pm 100 \sim \pm 150 ppm/^{\circ}C \dots $	65-74
$PEWK3920 Alloy \ Current \ Sensing \ Resistance: \\ 1m\Omega^{\sim} 5m\Omega Tolerance: \\ \pm 0.5\% TCR: \\ \pm 50 \ ppm/^{oC} \cdots \\ TCR: \\ \mathtt{TCR:} \\ \mathtt{TCR:}$	75-84
$SEWF3920 \text{Alloy Current Sensing Resistor} \text{Resistance:} 1m\Omega \sim 5m\Omega \text{Tolerance:} \pm 0.5\% \text{TCR:} \pm 25ppm/^{\circ}C \dots \dots \dots \dots \dots \dots \dots \dots \dots $	85-94
$PEWM5930 Alloy Current Sensing Resistor Resistance: 0.2 m \Omega \sim 1 m \Omega Tolerance: \pm 0.5\% TCR: \pm 100 ppm/^{\circ}C \dots \dots \dots \dots \dots \dots \dots \dots \dots $	95-104
$SEWF5930 \text{Alloy Current Sensing Resistor} \text{Resistance:} 1m\Omega \sim 3m\Omega \text{Tolerance:} \pm 0.5\% \text{TCR:} \pm 25ppm/^{\circ}\text{C} \dots $	105-114
$SEWF3951 \text{Alloy Current Sensing Resistor} \text{Resistance:} 0.25 \text{m}\Omega \sim 0.8 \text{m}\Omega \text{Tolerance:} \pm 0.5\% \text{TCR:} \pm 25 \text{ppm/°C} \dots \dots \dots \dots \dots \dots \dots \dots \dots $	115-124
EOAR Alloy Current Sensing Resistor Resistance: 25m Ω Tolerance: ±0.5% TCR: ±40ppm/°C	125-132
PEWM4026 PEWF4026 PEWM2726 PEWF2726 PEWM1216	133
ARCS	134
RTCS RTBS	135
CB350	136-157
СВ600	158-178
CB1000	179-196
PCBS6918	197-204
PCBS8518	205-212
PCBS8436	213-220
PCBS8536	221-228


Current Sensing Resistor

Characteristics

- High-Precision
- Low-TCR
- Low Inductance and Thermal Resistance
- Excellent Long-Term Stability

Applications

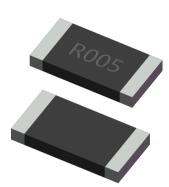
- Automotive Electronics
- Industrial Control Equipment
- Precision Power Supply
- Formation & Sorting of Battery
- Current Measurement

DataSheet No: C16009 Version:V4 Date:2024/03/24

PCSR2512

High-Precision Low-TCR Molded Alloy Current Sensing Resistor

Resistance	5mΩ~100mΩ
Tolerance	±0.1%
TCR	±15ppm/°C
Rated Current	3A~14A


Applications

Automotive Electronics Precision Power Supply Instrumentation Formation & Sorting of Battery Medical Equipment

Better Solution for Sustainable High End Manufacturing

Tolerance of $\pm 0.1\%$ and TCR of ± 15 pm High Reliability and Stability

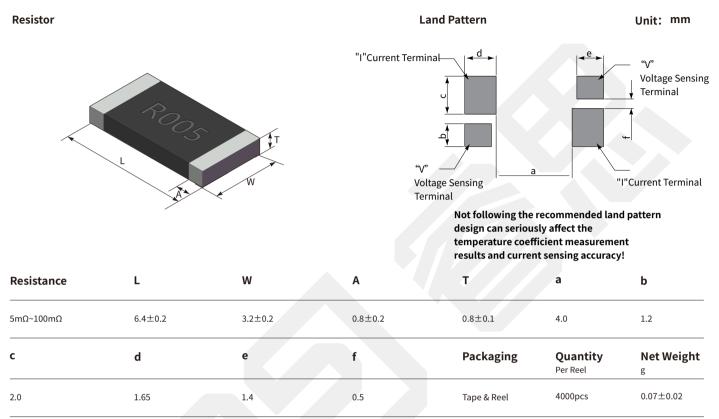
Introduction

High-precision low-TCR molded alloy current sensing resistor adopts a resistive alloy independently developed by C&B Electronics, which undergoes precision processing, then is welded by a dedicated electron beam welding equipment independently designed and manufactured by C&B Electronics to achieve continuous welding, and then is shaped by precision stamping. Based on the control ability of the resistance alloy's consistency, precision processing ability, process control ability, and precision welding ability, the product can achieve a maximum target tolerance of \pm 0.1% after precision trimming. Finally, the product is encapsulated through precision molding.

The resistance range of PCSR2512 series of products is $5m\Omega \sim 100m\Omega$. TCR of PCSR2512 series is $\leq \pm 15$ ppm/°C within the operating temperature range from -55°C to +125°C. By controlling the resistive alloy materials, precision electron beam welding processes and subsequent processes, the thermal EMF is significantly reduced, while significantly improving its long-term stability.

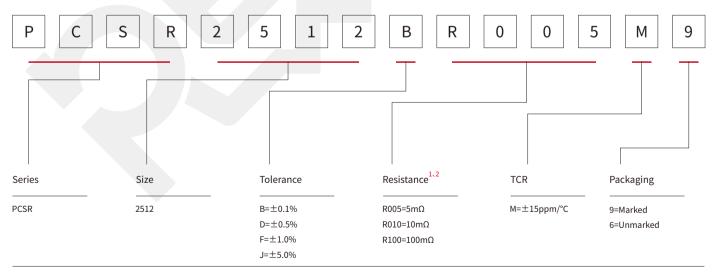
PCSR2512 series, from raw materials, core equipment, to core processes, achieves independent and controllable production, stable quality, and timely delivery. If the standard specifications cannot meet your needs, please contact our sales for consultation. Resi is committed to providing the best precision resistor solutions to meet the needs of customers in testing and measurement, power equipment, medical equipment, precision power supply, automotive electronics, formation & sorting of battery.

Electrical Parameters


Size	Resistance	Rated Power (+70°C)	Max. Operating Current	Operating Temperature	TCR ppm/°C(+20°C Ref)	Tolerance%
PCSR2512	5mΩ~9mΩ	1W	10A~14A	-55°C~+170°C	±15(-55°C~+125°C)	± 0.1 ± 0.5 ± 1.0 ± 5.0
PCSR2512	10mΩ~100mΩ	1W	3A~10A	-55°C~+170°C	±15(-55°C~+125°C)	± 0.1 ± 0.5 ± 1.0 ± 5.0

Applications

PCSR series is applicable to AC, DC, high and low-frequency sampling circuits.



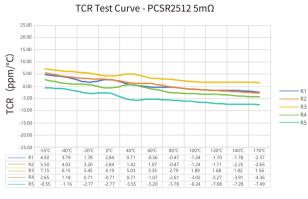
Dimensions

Part Number Information

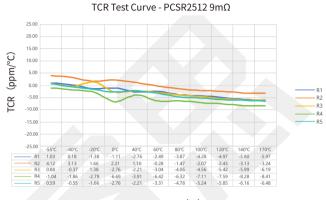
Example: PCSR2512BR005M9 (PCSR 2512 $\pm 0.1\%$ 5m Ω $\pm 15 ppm/^{\circ}C$ Marked)

1. There are situations where the expression of resistance value exceeds four digits. 49.9mohm expresses as R0499, and 49.99mohm expresses as R04999, etc.

2. For higher/lower resistance, tighter tolerance, higher power, lower TCR and larger size, please contact us.



Performance

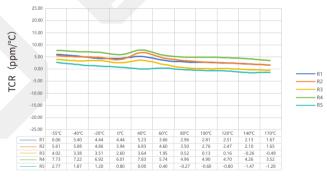

Test	Test Method	Standards	Typical	Max.	
High Temperature Storage	1000h@+170°C, unpowered	AEC-Q200 TEST 3 MIL-STD-202 Method 108	△ R≤±0.1%	∆R≤±0.3%	
Thermal Shock	-55°C, 15min~ambient temperature<20s~+155°C, 15min, 1000 cycles	AEC-Q200 TEST 16 MIL-STD-202 Method 107	∆R≤±0.1%	$\triangle R \leq \pm 0.3\%$	
Bias Humidity	+85°C, 85%RH, powered no less than 10% rated power for 1000h	AEC-Q200 TEST 7 MIL-STD-202 Method 103	∆R≼±0.05%	∆R≤±0.2%	
Load Life	2000h @ +70°C, rated power, 90min on, 30min off +70°C refers to terminal temperature	AEC-Q200 TEST 8 MIL-STD-202 Method 108	∆R≼±0.5%	∆R≤±1.0%	
Resistance to Solvent	Immerse in solvent for 3 min and wipe 10 times. Three cycles of three solvents. Dry at ambient temperature after cleaning	AEC-Q200 TEST 12 MIL-STD-202 Method 215	Clear marking. No vi damage	sible	
Mechanical Shock	Half Sine Wave, peak acceleration 100g's, pulse duration 6ms, 3 times in each of six directions, on three different axes	AEC-Q200 TEST 13 MIL-STD-202 Method 213	∆R≤±0.02%	∆R≤±0.05%	
Vibration	10-2KHz, 5g's, 20min/cycle, 12 cycles in each directions of X Y Z	AEC-Q200 TEST 14 MIL-STD-202 Method 204	∆R≤±0.02%	∆R≤±0.05%	
Resistance to Solder Heat	+260°C tin bath for 10s	AEC-Q200 TEST 15 MIL-STD-202 Method 210	∆R≤±0.05%	∆R≤±0.1%	
Solderability	+245°C tin bath for 3s	AEC-Q200 TEST 18 IEC 60115-1 4.17	No visible damage. 95% minimum cover	age	
TCR	-55°C and +125°C, +20°C Ref.	AEC-Q200 TEST 19 IEC 60115-1 4.8	Refer to tested curve max. value ≤ 15ppm	·	
Substrate Bending	2mm. Duration: 60s.	AEC-Q200 TEST 21 AEC-Q200-005	∆R≤±0.1%	∆R≤±0.5%	
Short Time Overload	5x rated power, 5s	IEC 60115-1 4.13	∆R≤±0.1%	$\triangle R \leq \pm 0.5\%$	
Low Temperature Storage	-55°C for 96h, unpowered	IEC 60068-2-1	∆R≤±0.1%	∆R≤±0.5%	
Moisture Resistance	Apply T=24 h/cycle, zero power, method 7a and 7b are not required	MIL-STD-202 Method 106	∆R≤±0.02%	∆R≤±0.05%	

Temperature Coefficient of Resistance Test Curve

Temperature (°C)

Temperature (°C)

TCR Test Curve - PCSR2512 10mΩ 25.00 20.00 15.00 TCR (ppm/°C) 10.00 5.00 0.00 -5.00 - R3 -10.00 -15.00 -20.00 -25.00 -55°C 5.05 0.13 2.93 -1.20 0°C 4.98 -6.98 -0.50 -1.99 120°C 1.50 -3.69 -0.80 -4.98 -2.27 140°C 0.91 -6.06 -1.91 -5.89 -3.21 170°C 0.50 -7.05 -1.93 -6.19 -40°C 4.49 -1.16 2.33 -1.83 2.20 -20°C 3.99 -1.00 2.00 0.00 40°C 3.99 0.50 1.50 0.00 2.47 60°C 2.49 -0.75 1.50 -0.75 0.74 80°C 2.49 -0.66 0.50 -2.32 100°C 1.99 -1.87 -0.12 -3.36 R1 R2 R3 R4


Temperature (°C)

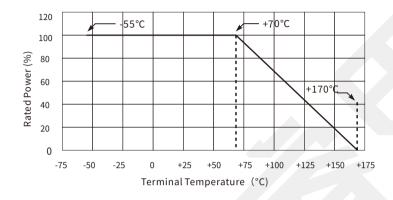
TCR Test Curve - PCSR2512 50mΩ

Temperature (°C)

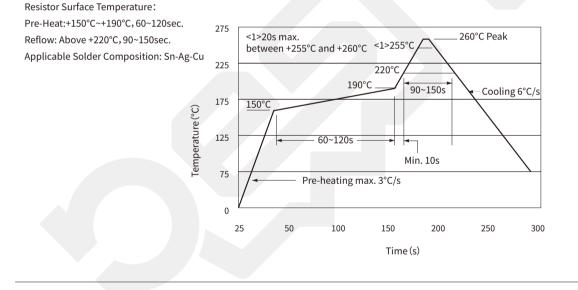
TCR Test Curve - PCSR2512 20mΩ

Temperature(°C)

TCR Test Curve - PCSR2512 100mΩ

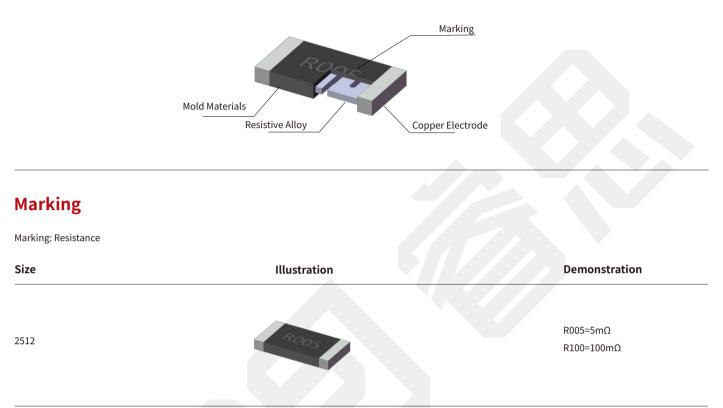

Temperature (°C)

PCSR2512


の思慮

High-Precision Low-TCR Molded Alloy Current Sensing Resistor

Derating Curve



Reflow Soldering Profile

Construction

Storage Instructions

(1) Resistors should be stored at a temperature of 5 to 35 °C, with a humidity of <60% RH. The humidity should be kept as low as possible.

(2) Resistors should be protected from direct sunlight.

(3) Resistors should be stored in a clean and dry environment free of harmful gases (HCl, Sulfuric acid, H₂S, etc.)

(4) Do not move the resistor from the packaging unless use it.

(5) Under the above storage conditions, the resistor can be stored for at least 1 year.

Usage Suggestions

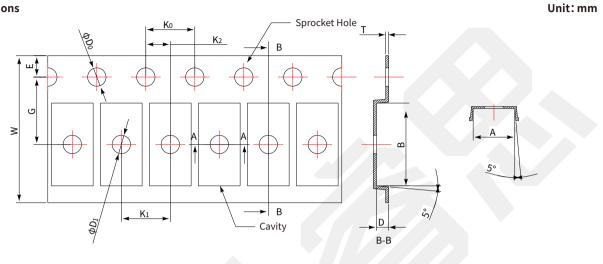
(1) Please protect the surface of the resistor during use. Prevent defects such as scratches, bumps, and oil stains on the surface.

(2) Do not use sharp tweezers to move the resistor. Scratches on the surface can cause resistance drift and resistor failure.

(3) When installing and using resistors, avoid the impact of mechanical stress on the resistor.

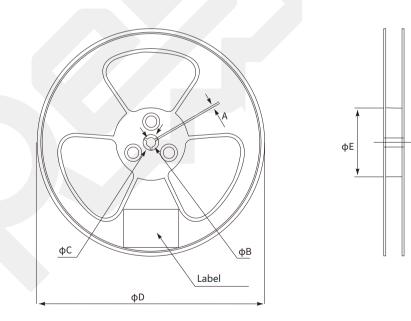
(4) The long-term operating power of resistors should be \leq rated power to avoid resistance drift caused by long-term overload.

(5) Please refer to the derating curve when operating under high temperature conditions or poor heat dissipation environment.


(6) If the operating conditions exceed the pulse specified in the pulse curve, a systematic evaluation is required.

(7) If the resistor is not used after being moved from the packaging, it should be stored under vacuum to avoid risks such as poor welding caused by oxidation of the resistor.

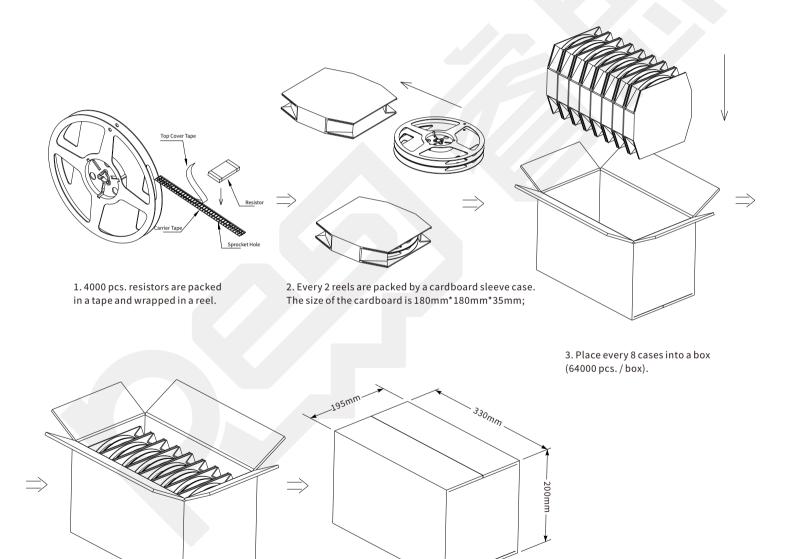
Packaging



Resistance	Α	В	φDο	ΦD 1	Ko	K 1	K 2	E	G	W	D	т
5mΩ-100mΩ	3.40±0.2	6.75±0.2	1.5±0.1	1.5±0.1	4.0±0.1	4.0±0.1	2.0±0.1	1.75±0.1	5.5±0.1	12.0±0.3	1.0±0.1	0.25±0.05

Reel Specifications

Unit: mm



Α	фВ	φC	φD	φE
1.5 min.	13.5 +0.5/-0.2	20.2 Min.	178±2	60±2

Packaging

- (1) 4000 pcs. resistors are packed in a tape and wrapped in a reel;
- (2) Every 2 reels are packed by a cardboard sleeve case. The size of the cardboard is 180mm*180mm*35mm;
- (3) Place every 8 cases into a box (64000 pcs. / box);
- (4) Box size: 330mm*195mm*200mm.

4. For the last box, 8 cardboard sleeve cases should be placed regardless of quantity of the product, preventing shaking.

5. Box size: 330mm*195mm*200mm

PCSR2512

High-Precision Low-TCR Molded Alloy Current Sensing Resistor

Part Number	Size	Tolerance	Resistance	Marking	TCR	Power	Max. Operating Current
PCSR2512BR005M9	2512	±0.1%	5.0mΩ	Marked	±15ppm/°C	1W	14A
PCSR2512DR005M9	2512	±0.5%	5.0mΩ	Marked	±15ppm/°C	1W	14A
PCSR2512FR005M9	2512	±1.0%	5.0mΩ	Marked	±15ppm/°C	1W	14A
PCSR2512JR005M9	2512	±5.0%	5.0mΩ	Marked	±15ppm/°C	1W	14A
PCSR2512BR006M9	2512	±0.1%	6.0mΩ	Marked	±15ppm/°C	1W	12A
PCSR2512DR006M9	2512	±0.5%	6.0mΩ	Marked	±15ppm/°C	1W	12A
PCSR2512FR006M9	2512	±1.0%	6.0mΩ	Marked	±15ppm/°C	1W	12A
PCSR2512JR006M9	2512	±5.0%	6.0mΩ	Marked	±15ppm/°C	1W	12A
PCSR2512BR007M9	2512	±0.1%	7.0mΩ	Marked	±15ppm/°C	1W	11A
PCSR2512DR007M9	2512	±0.5%	7.0mΩ	Marked	±15ppm/°C	1W	11A
PCSR2512FR007M9	2512	±1.0%	7.0mΩ	Marked	±15ppm/°C	1W	11A
PCSR2512JR007M9	2512	±5.0%	7.0mΩ	Marked	±15ppm/°C	1W	11A
PCSR2512BR008M9	2512	±0.1%	8.0mΩ	Marked	±15ppm/°C	1W	11A
PCSR2512DR008M9	2512	±0.5%	8.0mΩ	Marked	±15ppm/°C	1W	11A
PCSR2512FR008M9	2512	±1.0%	8.0mΩ	Marked	±15ppm/°C	1W	11A
PCSR2512JR008M9	2512	±5.0%	8.0mΩ	Marked	±15ppm/°C	1W	11A
PCSR2512BR009M9	2512	±0.1%	9.0mΩ	Marked	±15ppm/°C	1W	10A
PCSR2512DR009M9	2512	±0.5%	9.0mΩ	Marked	±15ppm/°C	1W	10A
PCSR2512FR009M9	2512	±1.0%	9.0mΩ	Marked	±15ppm/°C	1W	10A
PCSR2512JR009M9	2512	±5.0%	9.0mΩ	Marked	±15ppm/°C	1W	10A
PCSR2512BR010M9	2512	±0.1%	10mΩ	Marked	±15ppm/°C	1W	10A
PCSR2512DR010M9	2512	±0.5%	10mΩ	Marked	±15ppm/°C	1W	10A
PCSR2512FR010M9	2512	±1.0%	10mΩ	Marked	±15ppm/°C	1W	10A
PCSR2512JR010M9	2512	±5.0%	10mΩ	Marked	±15ppm/°C	1W	10A
PCSR2512BR015M9	2512	±0.1%	15mΩ	Marked	±15ppm/°C	1W	8A
PCSR2512DR015M9	2512	±0.5%	15mΩ	Marked	±15ppm/°C	1W	8A
PCSR2512FR015M9	2512	±1.0%	15mΩ	Marked	±15ppm/°C	1W	8A
PCSR2512JR015M9	2512	±5.0%	15mΩ	Marked	±15ppm/°C	1W	8A
PCSR2512BR018M9	2512	±0.1%	18mΩ	Marked	±15ppm/°C	1W	7A
PCSR2512DR018M9	2512	±0.5%	18mΩ	Marked	±15ppm/°C	1W	7A
PCSR2512FR018M9	2512	±1.0%	18mΩ	Marked	±15ppm/°C	1W	7A
PCSR2512JR018M9	2512	±5.0%	18mΩ	Marked	±15ppm/°C	1W	7A
PCSR2512BR020M9	2512	±0.1%	20mΩ	Marked	±15ppm/°C	1W	7A
PCSR2512DR020M9	2512	±0.5%	20mΩ	Marked	±15ppm/°C	1W	7A
PCSR2512FR020M9	2512	±1.0%	20mΩ	Marked	±15ppm/°C	1W	7A
PCSR2512JR020M9	2512	±5.0%	20mΩ	Marked	±15ppm/°C	1W	7A
PCSR2512BR025M9	2512	±0.1%	25mΩ	Marked	±15ppm/°C	1W	6A
PCSR2512DR025M9	2512	±0.1%	25mΩ	Marked	±15ppm/°C	1W	6A
PCSR2512DR025M9	2512	±1.0%	25mΩ	Marked	±15ppm/°C	1W	6A
PCSR2512FR025M9	2512	±1.0%	25mΩ	Marked	±15ppm/°C	1W	6A
PCSR2512JR025M9	2512		25ΠΩ 30mΩ		±15ppm/°C	1W	5A
		±0.1%		Marked	±15ppm/°C		
PCSR2512DR030M9	2512	±0.5%	30mΩ	Marked		1W	54
PCSR2512FR030M9	2512	±1.0%	30mΩ	Marked	±15ppm/°C	1W	5A
PCSR2512JR030M9	2512	土5.0%	30mΩ	Marked	±15ppm/°C	1W	5A

Part Number	Size	Tolerance	Resistance	Marking	TCR	Power	Max. Operating Current
PCSR2512BR033M9	2512	±0.1%	33mΩ	Marked	±15ppm/°C	1W	5A
PCSR2512DR033M9	2512	±0.5%	33mΩ	Marked	±15ppm/°C	1W	5A
PCSR2512FR033M9	2512	±1.0%	33mΩ	Marked	±15ppm/°C	1W	5A
PCSR2512JR033M9	2512	±5.0%	33mΩ	Marked	±15ppm/°C	1W	5A
PCSR2512BR040M9	2512	±0.1%	40mΩ	Marked	±15ppm/°C	1W	5A
PCSR2512DR040M9	2512	±0.5%	40mΩ	Marked	±15ppm/°C	1W	5A
PCSR2512FR040M9	2512	±1.0%	40mΩ	Marked	±15ppm/°C	1W	5A
PCSR2512JR040M9	2512	±5.0%	40mΩ	Marked	±15ppm/°C	1W	5A
PCSR2512BR047M9	2512	±0.1%	47mΩ	Marked	±15ppm/°C	1W	4A
PCSR2512DR047M9	2512	±0.5%	47mΩ	Marked	±15ppm/°C	1W	4A
PCSR2512FR047M9	2512	±1.0%	47mΩ	Marked	±15ppm/°C	1W	4A
PCSR2512JR047M9	2512	±5.0%	47mΩ	Marked	±15ppm/°C	1W	4A
PCSR2512BR050M9	2512	±0.1%	50mΩ	Marked	±15ppm/°C	1W	4A
PCSR2512DR050M9	2512	±0.5%	50mΩ	Marked	±15ppm/°C	1W	4A
PCSR2512FR050M9	2512	$\pm 1.0\%$	50mΩ	Marked	±15ppm/°C	1W	4A
PCSR2512JR050M9	2512	±5.0%	50mΩ	Marked	±15ppm/°C	1W	4A
PCSR2512BR100M9	2512	±0.1%	100mΩ	Marked	±15ppm/°C	1W	3A
PCSR2512DR100M9	2512	±0.5%	100mΩ	Marked	±15ppm/°C	1W	3A
PCSR2512FR100M9	2512	±1.0%	100mΩ	Marked	±15ppm/°C	1W	3A
PCSR2512JR100M9	2512	±5.0%	100mΩ	Marked	±15ppm/°C	1W	3A
PCSR2512BR005M6	2512	±0.1%	5.0mΩ	Unmarked	±15ppm/°C	1W	14A
PCSR2512DR005M6	2512	±0.5%	5.0mΩ	Unmarked	±15ppm/°C	1W	14A
PCSR2512FR005M6	2512	±1.0%	5.0mΩ	Unmarked	±15ppm/°C	1W	14A
PCSR2512JR005M6	2512	±5.0%	5.0mΩ	Unmarked	±15ppm/°C	1W	14A
PCSR2512BR006M6	2512	±0.1%	6.0mΩ	Unmarked	±15ppm/°C	1W	12A
PCSR2512DR006M6	2512	±0.5%	6.0mΩ	Unmarked	±15ppm/°C	1W	12A
PCSR2512FR006M6	2512	±1.0%	6.0mΩ	Unmarked	±15ppm/°C	1W	12A
PCSR2512JR006M6	2512	±5.0%	6.0mΩ	Unmarked	±15ppm/°C	1W	12A
PCSR2512BR007M6	2512	±0.1%	7.0mΩ	Unmarked	±15ppm/°C	1W	11A
PCSR2512DR007M6	2512	±0.5%	7.0mΩ	Unmarked	±15ppm/°C	1W	11A
PCSR2512FR007M6	2512	±1.0%	7.0mΩ	Unmarked	±15ppm/°C	1W	11A
PCSR2512JR007M6	2512	±5.0%	7.0mΩ	Unmarked	±15ppm/°C	1W	11A
PCSR2512BR008M6	2512	±0.1%	8.0mΩ	Unmarked	±15ppm/°C	1W	11A
PCSR2512DR008M6	2512	±0.5%	8.0mΩ	Unmarked	±15ppm/°C	1W	11A
PCSR2512FR008M6	2512	±1.0%	8.0mΩ	Unmarked	±15ppm/°C	1W	11A
PCSR2512JR008M6	2512	±5.0%	8.0mΩ	Unmarked	±15ppm/°C	1W	11A
PCSR2512BR009M6	2512	±0.1%	9.0mΩ	Unmarked	±15ppm/°C	1W	10A
PCSR2512DR009M6	2512	±0.5%	9.0mΩ	Unmarked	±15ppm/°C	1W	10A
PCSR2512FR009M6	2512	±1.0%	9.0mΩ	Unmarked	±15ppm/°C	1W	10A
PCSR2512JR009M6	2512	±5.0%	9.0mΩ	Unmarked	±15ppm/°C	1W	10A
PCSR2512BR010M6	2512	±0.1%	10mΩ	Unmarked	±15ppm/°C	1W	10A
PCSR2512DR010M6	2512	±0.5%	10mΩ	Unmarked	±15ppm/°C	1W	10A
PCSR2512FR010M6	2512	±1.0%	10mΩ	Unmarked	±15ppm/°C	1W	10A
PCSR2512JR010M6	2512	±5.0%	10mΩ	Unmarked	±15ppm/°C	1W	10A

PCSR2512

High-Precision Low-TCR Molded Alloy Current Sensing Resistor

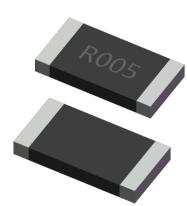
Part Number	Size	Tolerance	Resistance	Marking	TCR	Power	Max. Operating Current
PCSR2512BR015M6	2512	±0.1%	15mΩ	Unmarked	±15ppm/°C	1W	8A
PCSR2512DR015M6	2512	±0.5%	15mΩ	Unmarked	±15ppm/°C	1W	8A
PCSR2512FR015M6	2512	±1.0%	15mΩ	Unmarked	±15ppm/°C	1W	8A
PCSR2512JR015M6	2512	±5.0%	15mΩ	Unmarked	±15ppm/°C	1W	8A
PCSR2512BR018M6	2512	±0.1%	18mΩ	Unmarked	±15ppm/°C	1W	7A
PCSR2512DR018M6	2512	±0.5%	18mΩ	Unmarked	±15ppm/°C	1W	7A
PCSR2512FR018M6	2512	±1.0%	18mΩ	Unmarked	±15ppm/°C	1W	7A
PCSR2512JR018M6	2512	±5.0%	18mΩ	Unmarked	±15ppm/°C	1W	7A
PCSR2512BR020M6	2512	±0.1%	20mΩ	Unmarked	±15ppm/°C	1W	7A
PCSR2512DR020M6	2512	±0.5%	20mΩ	Unmarked	±15ppm/°C	1W	7A
PCSR2512FR020M6	2512	±1.0%	20mΩ	Unmarked	±15ppm/°C	1W	7A
PCSR2512JR020M6	2512	±5.0%	20mΩ	Unmarked	±15ppm/°C	1W	7A
PCSR2512BR025M6	2512	±0.1%	25mΩ	Unmarked	±15ppm/°C	1W	6A
PCSR2512DR025M6	2512	±0.5%	25mΩ	Unmarked	±15ppm/°C	1W	6A
PCSR2512FR025M6	2512	±1.0%	25mΩ	Unmarked	±15ppm/°C	1W	6A
PCSR2512JR025M6	2512	±5.0%	25mΩ	Unmarked	±15ppm/°C	1W	6A
PCSR2512BR030M6	2512	±0.1%	30mΩ	Unmarked	±15ppm/°C	1W	5A
PCSR2512DR030M6	2512	±0.5%	30mΩ	Unmarked	±15ppm/°C	1W	5A
PCSR2512FR030M6	2512	±1.0%	30mΩ	Unmarked	±15ppm/°C	1W	5A
PCSR2512JR030M6	2512	±5.0%	30mΩ	Unmarked	±15ppm/°C	1W	5A
PCSR2512BR033M6	2512	±0.1%	33mΩ	Unmarked	±15ppm/°C	1W	5A
PCSR2512DR033M6	2512	±0.5%	33mΩ	Unmarked	±15ppm/°C	1W	5A
PCSR2512FR033M6	2512	±1.0%	33mΩ	Unmarked	±15ppm/°C	1W	5A
PCSR2512JR033M6	2512	±5.0%	33mΩ	Unmarked	±15ppm/°C	1W	5A
PCSR2512BR040M6	2512	±0.1%	40mΩ	Unmarked	±15ppm/°C	1W	5A
PCSR2512DR040M6	2512	±0.5%	40mΩ	Unmarked	±15ppm/°C	1W	5A
PCSR2512FR040M6	2512	$\pm 1.0\%$	40mΩ	Unmarked	±15ppm/°C	1W	5A
PCSR2512JR040M6	2512	±5.0%	40mΩ	Unmarked	±15ppm/°C	1W	5A
PCSR2512BR047M6	2512	±0.1%	47mΩ	Unmarked	±15ppm/°C	1W	4A
PCSR2512DR047M6	2512	±0.5%	47mΩ	Unmarked	±15ppm/°C	1W	4A
PCSR2512FR047M6	2512	$\pm 1.0\%$	47mΩ	Unmarked	±15ppm/°C	1W	4A
PCSR2512JR047M6	2512	±5.0%	47mΩ	Unmarked	±15ppm/°C	1W	4A
PCSR2512BR050M6	2512	±0.1%	50mΩ	Unmarked	±15ppm/°C	1W	4A
PCSR2512DR050M6	2512	±0.5%	50mΩ	Unmarked	±15ppm/°C	1W	4A
PCSR2512FR050M6	2512	±1.0%	50mΩ	Unmarked	±15ppm/°C	1W	4A
PCSR2512JR050M6	2512	±5.0%	50mΩ	Unmarked	±15ppm/°C	1W	4A
PCSR2512BR100M6	2512	±0.1%	100mΩ	Unmarked	±15ppm/°C	1W	3A
PCSR2512DR100M6	2512	±0.5%	100mΩ	Unmarked	±15ppm/°C	1W	ЗА
PCSR2512FR100M6	2512	±1.0%	100mΩ	Unmarked	±15ppm/°C	1W	ЗА
PCSR2512JR100M6	2512	±5.0%	100mΩ	Unmarked	±15ppm/°C	1W	ЗА

DataSheet No: E16015 Version: V2 Date: 2024/03/24

PCSK2512

High-Precision Low-TCR Molded Alloy Current Sensing Resistor

Resistance	5mΩ~100mΩ
Tolerance	±0.5%
TCR	±25ppm/°C
Rated Current	3A~14A


Applications

Automotive Electronics Precision Power Supply Instrumentation Formation & Sorting of Battery Medical Equipment

Better Solution for Sustainable High End Manufacturing

Tolerance of \pm 0.5% and TCR of \pm 25ppm High Reliability and Stability

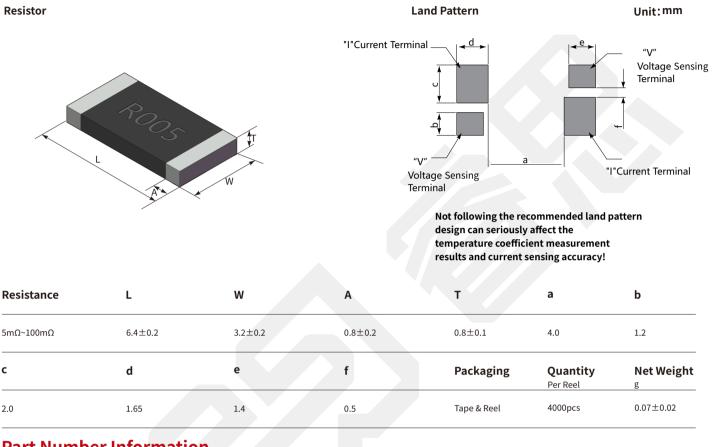
Introduction

High-precision low-TCR molded alloy current sensing resistor adopts a resistive alloy independently developed by C&B Electronics, which undergoes precision processing, then is welded by a dedicated electron beam welding equipment independently designed and manufactured by C&B Electronics to achieve continuous welding, and then is shaped by precision stamping. Based on the control ability of the resistance alloy's consistency, precision processing ability, process control ability, and precision welding ability, the product can achieve a maximum target tolerance of \pm 0.5% after precision trimming. Finally, the product is encapsulated through precision molding.

The resistance range of PCSK2512 series of products is $5m\Omega \sim 100m\Omega$. TCR of PCSK2512 series is $\leq \pm 25$ ppm/°C within the operating temperature range from -55°C to +125°C. By controlling the resistive alloy materials, precision electron beam welding processes and subsequent processes, the thermal EMF is significantly reduced, while significantly improving its long-term stability.

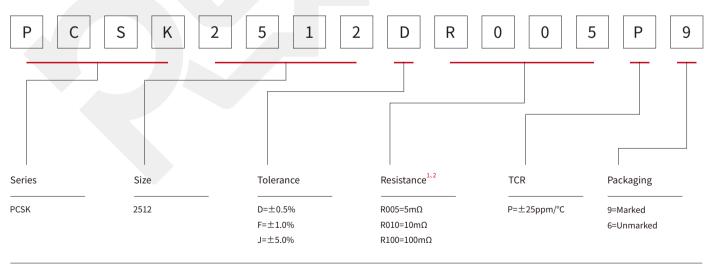
PCSK2512 series, from raw materials, core equipment, to core processes, achieves independent and controllable production, stable quality, and timely delivery. If the standard specifications cannot meet your needs, please contact our sales for consultation. Resi is committed to providing the best precision resistor solutions to meet the needs of customers in testing and measurement, power equipment, medical equipment, precision power supply, automotive electronics, formation & sorting of battery.

Electrical Parameters


Size	Resistance	Rated Power (+70°C)	Max. Operating Current	Operating Temperature	TCR ppm/°C(+20°C Ref)	Tolerance %
PCSK2512	5mΩ~9mΩ	1W	10A~14A	-55°C~+170°C	±25(-55°C~+125°C)	$\pm 0.5 \\ \pm 1.0 \\ \pm 5.0$
PCSK2512	10mΩ~100mΩ	1W	3A~10A	-55°C~+170°C	±25(-55°C~+125°C)	± 0.5 ± 1.0 ± 5.0

Applications

PCSK series is applicable to AC, DC, high and low-frequency sampling circuits.



Dimensions

Part Number Information

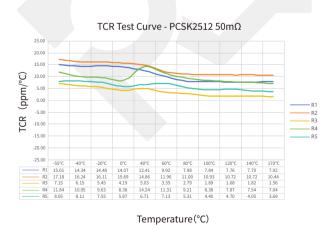
Example: PCSK2512DR005P9 (PCSK 2512 \pm 0.5% 5m Ω \pm 25ppm/°C Marked)

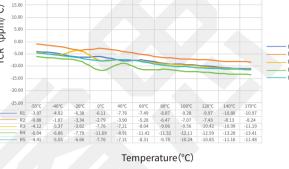
1. There are situations where the expression of resistance value exceeds four digits. 49.9mohm expresses as R0499, and 49.99mohm expresses as R04999, etc.

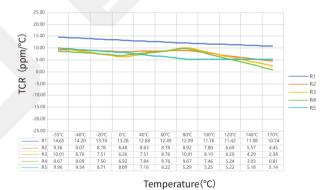
2. For higher/lower resistance, tighter tolerance, higher power, lower TCR and larger size, please contact us.

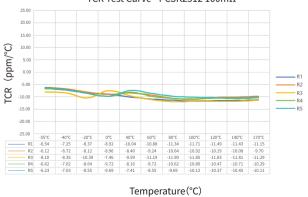
Performance

Test	Test Method	Standards	Typical	Max.	
High Temperature Storage	1000h@+170°C, unpowered	AEC-Q200 TEST 3 MIL-STD-202 Method 108	△ R≤±0.1%	△ R≤±0.5%	
Thermal Shock	-55°C, 15min~ambient temperature<20s~+155°C, 15min, 1000 cycles	AEC-Q200 TEST 16 MIL-STD-202 Method 107	∆R≤±0.1%	∆R≤±0.5%	
Bias Humidity	+85°C, 85%RH, powered no less than 10% rated power for 1000h	AEC-Q200 TEST 7 MIL-STD-202 Method 103	∆R≤±0.05%	△R≤±0.5%	
Load Life	2000h @ +70°C, rated power, 90min on, 30min off +70°C refers to terminal temperature	AEC-Q200 TEST 8 MIL-STD-202 Method 108	∆R≤±0.5%	∆R≤±1.0%	
Resistance to Solvent	Immerse in solvent for 3 min and wipe 10 times. Three cycles of three solvents. Dry at ambient temperature after cleaning	AEC-Q200 TEST 12 MIL-STD-202 Method 215	Clear marking. No vi damage	sible	
Mechanical Shock	Half Sine Wave, peak acceleration 100g's, pulse duration 6ms, 3 times in each of six directions, on three different axes	AEC-Q200 TEST 13 MIL-STD-202 Method 213	∆R≤±0.02%	∆R≤±0.05%	
Vibration	10-2KHz, 5g's, 20min/cycle, 12 cycles in each directions of X Y Z	AEC-Q200 TEST 14 MIL-STD-202 Method 204	∆R≤±0.02%	∆R≤±0.05%	
Resistance to Solder Heat	+260°C tin bath for 10s	AEC-Q200 TEST 15 MIL-STD-202 Method 210	∆R≤±0.05%	∆R≤±0.1%	
Solderability	+245°C tin bath for 3s	AEC-Q200 TEST 18 IEC 60115-1 4.17	No visible damage. 95% minimum coverage		
TCR	-55°C and +125°C, +20°C Ref.	AEC-Q200 TEST 19 IEC 60115-1 4.8	Refer to tested curve max. value ≤ 25ppm	,	
Substrate Bending	2mm. Duration: 60s.	AEC-Q200 TEST 21 AEC-Q200-005	∆R≤±0.1%	∆R≤±0.5%	
Short Time Overload	5x rated power, 5s	IEC 60115-1 4.13	∆R≤±0.1%	∆R≤±0.5%	
Low Temperature Storage	-55°C for 96h, unpowered	IEC 60068-2-1	\triangle R \leq ±0.1%	∆R≤±0.5%	
Moisture Resistance	Apply T=24 h/cycle, zero power, method 7a and 7b are not required	MIL-STD-202 Method 106	∆R≤±0.02%	∆R≤±0.2%	


Temperature Coefficient of Resistance Test Curve

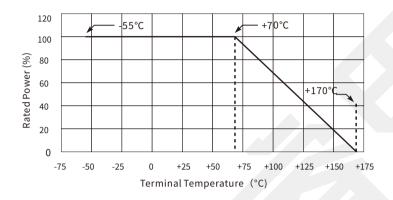

TCR Test Curve - PCSK2512 10mΩ


Temperature(°C)

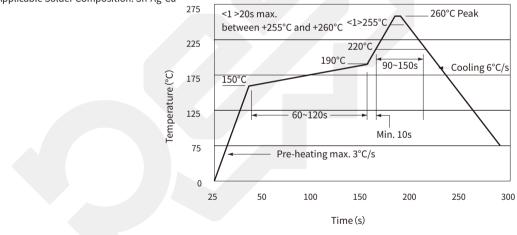


TCR Test Curve - PCSK2512 9mΩ 20.00 15.00 TCR (ppm/°C) 10.00 5.00 0.00 -5.00 R3 R4 -10.00 -15.00 -20.00 -25.00 120°C -9.97 -7.43 -10.42 -12.59 -10.85 100°C -9.28 -7.07 -9.56 -12.11 -10.24 170°C -10.97 -8.24 -11.19 -13.41 -11.48 80°C -8.87 -6.47 -9.06 -11.32 -9.78 140°C -20°C -6.38 -3.34 -3.62 -7.79 -6.66 60°C -7.49 -5.28 -8.04 -11.42 -8.31 -40°C -4.82 -1.87 -5.37 -6.86 -5.55 0°C -6.11 -2.79 -7.76 -11.69 -7.76 40°C -7.76 -3.90 -7.21 -8.91 -7.21 -3.97 -0.88 -4.12 -6.04 -4.41 -10.80 -8.13 -10.99 -13.28 -11.16 R1 R2 R3 R4

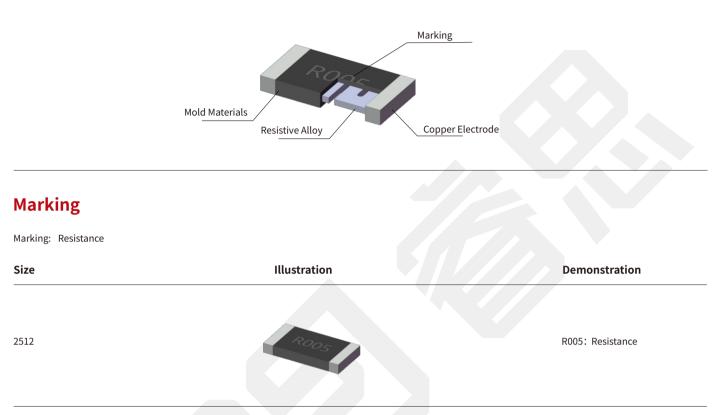
TCR Test Curve - PCSK2512 20mΩ


TCR Test Curve - PCSK2512 100mΩ

PCSK2512


High-Precision Low-TCR Molded Alloy Current Sensing Resistor

Derating Curve


Reflow Soldering Profile

Resistor Surface Temperature: Pre-Heat:+150°C~+190°C, 60~120sec. Reflow: Above+220°C, 90~150sec. Applicable Solder Composition: Sn-Ag-Cu

Construction

Storage Instructions

(1) Resistors should be stored at a temperature of 5 to 35 °C, with a humidity of <60% RH. The humidity should be kept as low as possible.

(2) Resistors should be protected from direct sunlight.

(3) Resistors should be stored in a clean and dry environment free of harmful gases (HCl, Sulfuric acid, H₂S, etc.)

(4) Do not move the resistor from the packaging unless use it.

(5) Under the above storage conditions, the resistor can be stored for at least 1 year.

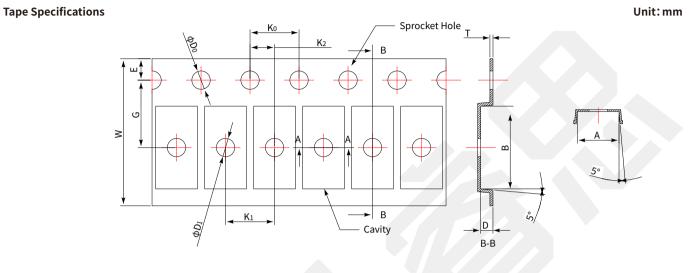
Usage Suggestions

(1) Please protect the surface of the resistor during use. Prevent defects such as scratches, bumps, and oil stains on the surface.

(2) Do not use sharp tweezers to move the resistor. Scratches on the surface can cause resistance drift and resistor failure.

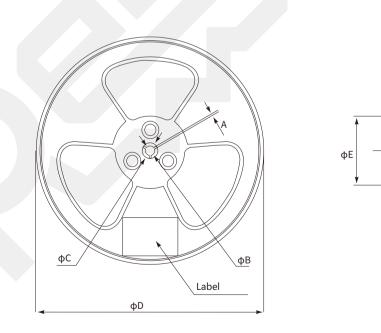
(3) When installing and using resistors, avoid the impact of mechanical stress on the resistor.

(4) The long-term operating power of resistors should be \leq rated power to avoid resistance drift caused by long-term overload.


(5) Please refer to the derating curve when operating under high temperature conditions or poor heat dissipation environment.

(6) If the operating conditions exceed the pulse specified in the pulse curve, a systematic evaluation is required.

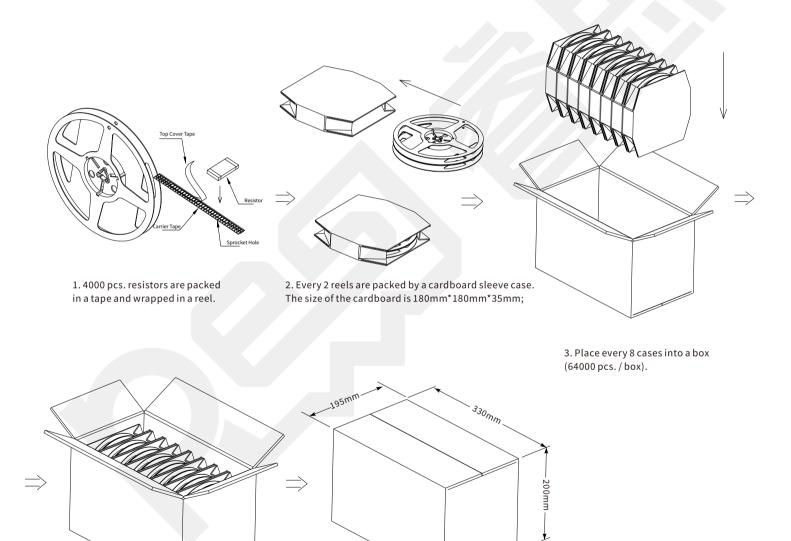
(7) If the resistor is not used after being moved from the packaging, it should be stored under vacuum to avoid risks such as poor welding caused by oxidation of the resistor.

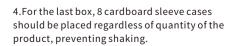

Packaging

Resistance	Α	В	φDο	φD 1	Ko	K1	K2	E	G	W	D	т
5mΩ-100mΩ	3.40±0.2	6.75±0.2	1.5 ± 0.1	1.5±0.1	4.0±0.1	4.0±0.1	2.0±0.1	1.75±0.1	5.5±0.1	12.0±0.3	1.0 ± 0.1	0.25±0.05

Reel Specifications

Unit:mm




Α	φВ	φC	φD	φE
1.5 min.	13.5 +0.5/-0.2	20.2 Min.	178±2	60±2

Packaging

- (1) 4000 pcs. resistors are packed in a tape and wrapped in a reel;
- (2) Every 2 reels are packed by a cardboard sleeve case. The size of the cardboard is 180mm*180mm*35mm;
- (3) Place every 8 cases into a box (64000 pcs. / box);
- (4) Box size: 330mm*195mm*200mm.

5. Box size: 330mm*195mm*200mm

PCSK2512

High-Precision Low-TCR Molded Alloy Current Sensing Resistor

Part Number	Size	Tolerance	Resistance	Marking	TCR	Power	Max. Operating Current
PCSK2512DR005P9	2512	±0.5%	5.0mΩ	Marked	±25ppm/°C	1W	14A
PCSK2512FR005P9	2512	±1.0%	5.0mΩ	Marked	±25ppm/°C	1W	14A
PCSK2512JR005P9	2512	±5.0%	5.0mΩ	Marked	±25ppm/°C	1W	14A
PCSK2512DR006P9	2512	±0.5%	6.0mΩ	Marked	±25ppm/°C	1W	12A
PCSK2512FR006P9	2512	±1.0%	6.0mΩ	Marked	±25ppm/°C	1W	12A
PCSK2512JR006P9	2512	±5.0%	6.0mΩ	Marked	±25ppm/°C	1W	12A
PCSK2512DR007P9	2512	±0.5%	7.0mΩ	Marked	±25ppm/°C	1W	11A
PCSK2512FR007P9	2512	±1.0%	7.0mΩ	Marked	±25ppm/°C	1W	11A
PCSK2512JR007P9	2512	±5.0%	7.0mΩ	Marked	±25ppm/°C	1W	11A
PCSK2512DR008P9	2512	±0.5%	8.0mΩ	Marked	±25ppm/°C	1W	11A
PCSK2512FR008P9	2512	±1.0%	8.0mΩ	Marked	±25ppm/°C	1W	11A
PCSK2512JR008P9	2512	±5.0%	8.0mΩ	Marked	±25ppm/°C	1W	11A
PCSK2512DR009P9	2512	±0.5%	9.0mΩ	Marked	±25ppm/°C	1W	10A
PCSK2512FR009P9	2512	±1.0%	9.0mΩ	Marked	±25ppm/°C	1W	10A
PCSK2512JR009P9	2512	±5.0%	9.0mΩ	Marked	±25ppm/°C	1W	10A
PCSK2512DR010P9	2512	±0.5%	10mΩ	Marked	±25ppm/°C	1W	10A
PCSK2512FR010P9	2512	±1.0%	10mΩ	Marked	±25ppm/°C	1W	10A
PCSK2512JR010P9	2512	±5.0%	10mΩ	Marked	±25ppm/°C	1W	10A
PCSK2512DR015P9	2512	±0.5%	15mΩ	Marked	±25ppm/°C	1W	8A
PCSK2512FR015P9	2512	±1.0%	15mΩ	Marked	±25ppm/°C	1W	8A
PCSK2512JR015P9	2512	±5.0%	15mΩ	Marked	±25ppm/°C	1W	8A
PCSK2512DR018P9	2512	±0.5%	18mΩ	Marked	±25ppm/°C	1W	7A
PCSK2512FR018P9	2512	±1.0%	18mΩ	Marked	±25ppm/°C	1W	7A
PCSK2512JR018P9	2512	±5.0%	18mΩ	Marked	±25ppm/°C	1W	7A
PCSK2512DR020P9	2512	±0.5%	20mΩ	Marked	±25ppm/°C	1W	7A
PCSK2512FR020P9	2512	±1.0%	20mΩ	Marked	±25ppm/°C	1W	7A
PCSK2512JR020P9	2512	±5.0%	20mΩ	Marked	±25ppm/°C	1W	7A
PCSK2512DR025P9	2512	±0.5%	25mΩ	Marked	±25ppm/°C	1W	6A
PCSK2512FR025P9	2512	±1.0%	25mΩ	Marked	±25ppm/°C	1W	6A
PCSK2512JR025P9	2512	±5.0%	25mΩ	Marked	±25ppm/°C	1W	6A
PCSK2512DR030P9	2512	±0.5%	30mΩ	Marked	±25ppm/°C	1W	5A
PCSK2512FR030P9	2512	±1.0%	30mΩ	Marked	±25ppm/°C	1W	5A
PCSK2512JR030P9	2512	±5.0%	30mΩ	Marked	±25ppm/°C	1W	5A
PCSK2512DR033P9	2512	±0.5%	33mΩ	Marked	±25ppm/°C	1W	5A
PCSK2512FR033P9	2512	±1.0%	33mΩ	Marked	±25ppm/°C	1W	5A
PCSK2512JR033P9	2512	±5.0%	33mΩ	Marked	±25ppm/°C	1W	5A
PCSK2512DR040P9	2512	±0.5%	40mΩ	Marked	±25ppm/°C	1W	5A
PCSK2512FR040P9	2512	±1.0%	40mΩ	Marked	±25ppm/°C	1W	5A
PCSK2512JR040P9	2512	±5.0%	40mΩ	Marked	±25ppm/°C	1W	5A
PCSK2512DR047P9	2512	±0.5%	47mΩ	Marked	±25ppm/°C	1W	4A
PCSK2512FR047P9	2512	±1.0%	47mΩ	Marked	±25ppm/°C	1W	4A
PCSK2512JR047P9	2512	±5.0%	47mΩ	Marked	±25ppm/°C	1W	4A
PCSK2512DR050P9	2512	±0.5%	50mΩ	Marked	±25ppm/°C	1W	4A
PCSK2512FR050P9	2512	±1.0%	50mΩ	Marked	±25ppm/°C	1W	4A
PCSK2512JR050P9	2512	±5.0%	50mΩ	Marked	±25ppm/°C	1W	4A
PCSK2512DR100P9	2512	±0.5%	100mΩ	Marked	±25ppm/°C	1W	3A
PCSK2512FR100P9	2512	±1.0%	100mΩ	Marked	±25ppm/°C	1W	3A
PCSK2512JR100P9	2512	±5.0%	100mΩ	Marked	±25ppm/°C	1W	3A

Part Number	Size	Tolerance	Resistance	Marking	TCR	Power	Max. Operating Current
PCSK2512DR005P6	2512	±0.5%	5.0mΩ	Unmarked	±25ppm/°C	1W	14A
PCSK2512FR005P6	2512	$\pm 1.0\%$	5.0mΩ	Unmarked	±25ppm/°C	1W	14A
PCSK2512JR005P6	2512	±5.0%	5.0mΩ	Unmarked	±25ppm/°C	1W	14A
PCSK2512DR006P6	2512	±0.5%	6.0mΩ	Unmarked	±25ppm/°C	1W	12A
PCSK2512FR006P6	2512	$\pm 1.0\%$	6.0mΩ	Unmarked	±25ppm/°C	1W	12A
PCSK2512JR006P6	2512	±5.0%	6.0mΩ	Unmarked	±25ppm/°C	1W	12A
PCSK2512DR007P6	2512	±0.5%	7.0mΩ	Unmarked	±25ppm/°C	1W	11A
PCSK2512FR007P6	2512	±1.0%	7.0mΩ	Unmarked	±25ppm/°C	1W	11A
PCSK2512JR007P6	2512	±5.0%	7.0mΩ	Unmarked	±25ppm/°C	1W	11A
PCSK2512DR008P6	2512	±0.5%	8.0mΩ	Unmarked	±25ppm/°C	1W	11A
PCSK2512FR008P6	2512	±1.0%	8.0mΩ	Unmarked	±25ppm/°C	1W	11A
PCSK2512JR008P6	2512	±5.0%	8.0mΩ	Unmarked	±25ppm/°C	1W	11A
PCSK2512DR009P6	2512	±0.5%	9.0mΩ	Unmarked	±25ppm/°C	1W	10A
PCSK2512FR009P6	2512	±1.0%	9.0mΩ	Unmarked	±25ppm/°C	1W	10A
PCSK2512JR009P6	2512	±5.0%	9.0mΩ	Unmarked	±25ppm/°C	1W	10A
PCSK2512DR010P6	2512	±0.5%	10mΩ	Unmarked	±25ppm/°C	1W	10A
PCSK2512FR010P6	2512	±1.0%	10mΩ	Unmarked	±25ppm/°C	1W	10A
PCSK2512JR010P6	2512	±5.0%	10mΩ	Unmarked	±25ppm/°C	1W	10A
PCSK2512DR015P6	2512	±0.5%	15mΩ	Unmarked	±25ppm/°C	1W	8A
PCSK2512FR015P6	2512	±1.0%	15mΩ	Unmarked	±25ppm/°C	1W	8A
PCSK2512JR015P6	2512	±5.0%	15mΩ	Unmarked	±25ppm/°C	1W	8A
PCSK2512DR018P6	2512	±0.5%	18mΩ	Unmarked	±25ppm/°C	1W	7A
PCSK2512FR018P6	2512	±1.0%	18mΩ	Unmarked	±25ppm/°C	1W	 7A
PCSK2512JR018P6	2512	±5.0%	18mΩ	Unmarked	±25ppm/°C	1W	
PCSK2512DR020P6	2512	±0.5%	20mΩ	Unmarked	±25ppm/°C	1W	
PCSK2512FR020P6	2512	±1.0%	20mΩ	Unmarked	±25ppm/°C	1W	7A
PCSK2512JR020P6	2512	±5.0%	20mΩ	Unmarked	±25ppm/°C	1W	
PCSK2512DR025P6	2512	±0.5%	25mΩ	Unmarked	±25ppm/°C	1W	6A
PCSK2512FR025P6	2512	±1.0%	25mΩ	Unmarked	±25ppm/°C	1W	6A
PCSK2512JR025P6	2512		25mΩ		±25ppm/°C	1W	6A
PCSK2512DR030P6	2512	±5.0%	30mΩ	Unmarked Unmarked	±25ppm/°C	1W	5A
		±0.5%					
PCSK2512FR030P6	2512	±1.0%	30mΩ	Unmarked	±25ppm/°C	1W	5A
PCSK2512JR030P6	2512	±5.0%	30mΩ	Unmarked	±25ppm/°C	1W	5A
PCSK2512DR033P6	2512	±0.5%	33mΩ	Unmarked	±25ppm/°C	1W	5A
PCSK2512FR033P6	2512	±1.0%	33mΩ	Unmarked	±25ppm/°C	1W	5A
PCSK2512JR033P6	2512	±5.0%	33mΩ	Unmarked	±25ppm/°C	1W	5A
PCSK2512DR040P6	2512	±0.5%	40mΩ	Unmarked	±25ppm/°C	1W	5A
PCSK2512FR040P6	2512	±1.0%	40mΩ	Unmarked	±25ppm/°C	1W	5A
PCSK2512JR040P6	2512	±5.0%	40mΩ	Unmarked	±25ppm/°C	1W	5A
PCSK2512DR047P6	2512	±0.5%	47mΩ	Unmarked	±25ppm/°C	1W	4A
PCSK2512FR047P6	2512	±1.0%	47mΩ	Unmarked	±25ppm/°C	1W	4A
PCSK2512JR047P6	2512	±5.0%	47mΩ	Unmarked	±25ppm/°C	1W	4A
PCSK2512DR050P6	2512	±0.5%	50mΩ	Unmarked	±25ppm/°C	1W	4A
PCSK2512FR050P6	2512	±1.0%	50mΩ	Unmarked	±25ppm/°C	1W	4A
PCSK2512JR050P6	2512	±5.0%	50mΩ	Unmarked	±25ppm/°C	1W	4A
PCSK2512DR100P6	2512	±0.5%	100mΩ	Unmarked	±25ppm/°C	1W	3A
PCSK2512FR100P6	2512	±1.0%	100mΩ	Unmarked	±25ppm/°C	1W	3A
PCSK2512JR100P6	2512	±5.0%	100mΩ	Unmarked	±25ppm/°C	1W	3A

Data Sheet No:E05014 Version:V3 Date:2024/03/09

EBWM2512

High-Precision Low-Inductance Alloy Current Sensing Resistor

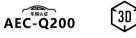
Resistance	0.3mΩ~1mΩ
Tolerance	±0.5%
TCR	±200ppm/°C
Rated Current	77A~140A

Applications

Automotive Electronics Precision Power Supply Formation & Sorting of Battery Electric Tools Medical Equipment

Better Solution for Sustainable High End Manufacturing

Low-Inductance Alloy Current Sensing Resistor "Trimming Free" Technology, High Precision, Reliability



Introduction

EBWM2512 series is based on a precision resistive alloy, welded by a specialized electron beam welding equipment. Both resistive alloy and welding equipment are independently designed and manufactured by C&B Electronics. Because of controlling the consistency of resistive alloys, precision processing ability and efficient welding, EBWM2512 achieves a maximum target tolerance of \pm 0.5% after stamping without trimming. TCR of EBWM2512 series within the temperature range of -55 °C to +170 °C is $\leq \pm 200$ ppm/°C. Inductance is < 3nH.

"Trimming Free" technology avoids the loss of rated current caused by trimming and also avoids current accumulation hotspots caused by trimmed notch, greatly improving the reliability of the product. Meanwhile, due to the improvement of welding quality, thermal EMF of the product is significantly reduced, improving its long-term stability.

EBWM2512 series, from raw materials, core equipment, to core processes, achieves independent and controllable production, stable quality, and timely delivery. If the standard specifications cannot meet your needs, please contact our sales for consultation. Resi is committed to providing the best precision resistor solutions to meet the needs of customers in instrumentation, medical equipment, automotive electronics, precision power supplies, formation & sorting of battery, testing and measurement equipment and other fields.

Electrical Parameters

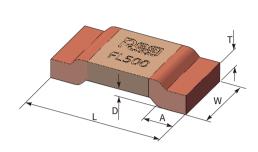
Size	Resistance	Rated Power (+70°C)	Max. Operating Current	Operating Temperature	TCR ppm/°C(+20°C Ref)	Thermal Resistance*	Tolerance %
EBWM2512	0.3mΩ	6W	140A	-55°C~+170°C	±200(-55°C~+170°C)	4.1°C/W	$\pm 0.5 \\ \pm 1.0 \\ \pm 5.0$
EBWM2512	0.5mΩ	6W	109A	-55°C~+170°C	±200(-55°C~+170°C)	5.1°C/W	$\pm 0.5 \\ \pm 1.0 \\ \pm 5.0$
EBWM2512	1.0mΩ	6W	77A	-55°C~+170°C	±200(-55°C~+170°C)	11.1°C/W	$\pm 0.5 \\ \pm 1.0 \\ \pm 5.0$

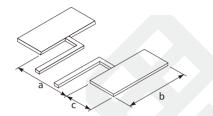
* Thermal Resistance: Refer to the internal thermal resistance between the center of the resistive alloy and the copper electrode.

As the heat dissipation efficiency is influenced by operating environment, copper bus bars, PCB design, etc., this parameter is only for reference.

Applications

Inductance of EBWM2512 current sensing resistors is less than 3nH, suitable for AC, DC low and high frequency sampling circuits.


EBWM2512 High-Precision Low-Inductance Alloy Current Sensing Resistor


Dimensions

Resistor

Unit:mm

Land Pattern

Not following the recommended land pattern design can seriously affect the temperature coefficient measurement results and current sensing accuracy!

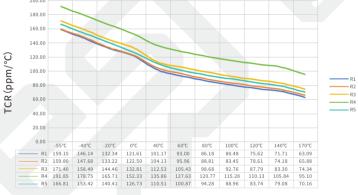
Resistance	L	W	Α	т	D	а	b	c	Packaging	Quantity Per Reel	Net Weight
0.3mΩ	6.3±0.3	3.0±0.3	1.3±0.3	1.0±0.2	0.35±0.2	3.9±0.2	3.4±0.25	1.8±0.25	Tape&Reel	4000pcs	0.17±0.05
0.5mΩ	6.3±0.3	3.0±0.3	1.3±0.3	0.9±0.2	0.35±0.2	3.9±0.2	3.4±0.25	1.8±0.25	Tape&Reel	4000pcs	0.16±0.05
1.0mΩ	6.3±0.3	3.0±0.3	1.3±0.3	0.4±0.15	0.35±0.2	3.9±0.2	3.4±0.25	1.8±0.25	Tape&Reel	4000pcs	0.07±0.03

Part Number Information

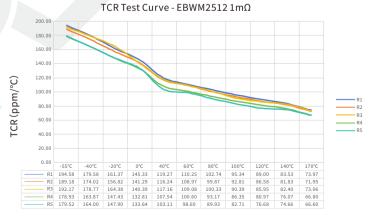
<code>Example:EBWM2512FL500S9(EBWM 2512 $\pm 1.0\%$ 0.5m\Omega $\pm 200 ppm/^{\circ}C$ Standard)</code>

For higher/lower resistance, tighter tolerance, higher power, lower TCR and larger size, please contact us.

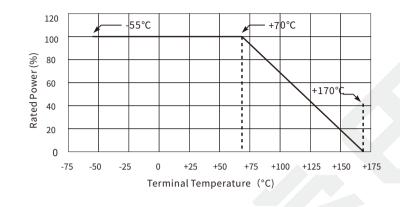
EBWM2512 High-Precision Low-Inductance Alloy Current Sensing Resistor

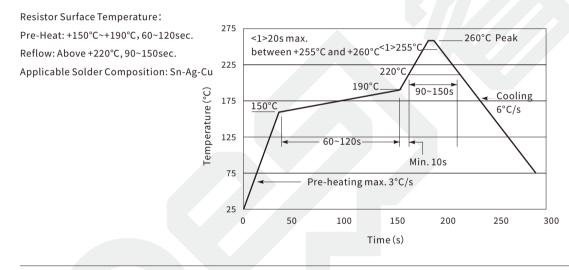

Performance

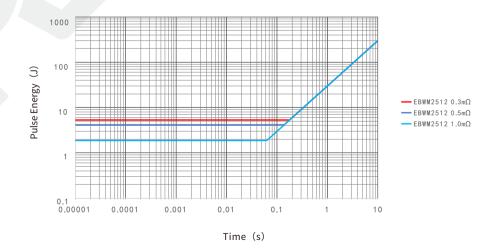
Test	Test Method	Standards	Typical	Max.
High Temperature Storage	1000h@+170°C, unpowered	AEC-Q200 TEST 3 MIL-STD-202 Method 108	△ R≤±0.5%	∆R≤±1.0%
Thermal Shock	-55°C, 15min~ambient temperature<20s~+155°C, 15min, 1000 cycles	AEC-Q200 TEST 16 MIL-STD-202 Method 107	∆R≤±0.1%	△ R≤±0.5%
Bias Humidity	+85°C, 85%RH, powered no less than 10% rated power for 1000h	AEC-Q200 TEST 7 MIL-STD-202 Method 103	∆R≤±0.2%	∆R≤±0.5%
Load Life	2000h @ +70°C, rated power, 90min on, 30min off +70°C refers to terminal temperature	AEC-Q200 TEST 8 MIL-STD-202 Method 108	△ R≤±0.5%	∆R≤±1.0%
Resistance to Solvent	Immerse in solvent for 3 min and wipe 10 times. Three cycles of three solvents. Dry at ambient temperature after cleaning	AEC-Q200 TEST 12 MIL-STD-202 Method 215	Clear marking. No damage	visible
Mechanical Shock	Half Sine Wave, peak acceleration 100g's, pulse duration 6ms, 3 times in each of six directions, on three different axes	AEC-Q200 TEST 13 MIL-STD-202 Method 213	△ R≤±0.01%	∆R≼±0.2%
Vibration	10-2KHz, 5g's, 20min/cycle, 12 cycles in each directions of X Y Z	AEC-Q200 TEST 14 MIL-STD-202 Method 204	△R≤±0.01%	∆R≼±0.2%
Resistance to Solder Heat	+260°C tin bath for 10s	AEC-Q200 TEST 15 MIL-STD-202 Method 210	∆R≼±0.2%	∆R≼±0.5%
Solderability	+245°C tin bath for 3s	AEC-Q200 TEST 18 IEC 60115-1 4.17	No visible damage 95% minimum cov	
TCR	-55°C and +170°C, +20°C Ref.	AEC-Q200 TEST 19 IEC 60115-1 4.8	Refer to tested cur max. value ≤ ±20	,
Substrate Bending	2mm. Duration: 60s.	AEC-Q200 TEST 21 AEC-Q200-005	∆R≤±0.1%	∆R≤±0.5%
Short Time Overload	5x rated power, 5s	IEC 60115-1 4.13	∆R≤±0.1%	∆R≤±0.5%
Low Temperature Storage	-55°C for 96h, unpowered	IEC 60068-2-1	$\triangle R \leq \pm 0.1\%$	∆R≤±0.5%
Moisture Resistance	Apply T=24 h/cycle, zero power, method 7a and 7b are not required	MIL-STD-202 Method 106	∆R≤±0.1%	∆R≼±0.5%



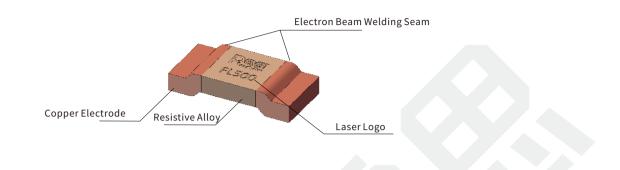
Temperature Coefficient of Resistance Test Curve


Temperature (°C)


Temperature (°C)


Derating Curve

Reflow Soldering Profile


Maximum Pulse Energy Curve

Construction

Marking

The first line (four digits) represents brand. The second line (five digits) represents tolerance and resistance.

Size	Illustration	Demonstration
2512		RESI: Brand F:Tolerance L500:Resistance

Storage Instructions

(1) Resistors should be stored at a temperature of 5 to 35 °C, with a humidity of <60% RH. The humidity should be kept as low as possible.

(2) Resistors should be protected from direct sunlight.

(3) Resistors should be stored in a clean and dry environment free of harmful gases (HCl, Sulfuric acid, H₂S, etc.)

(4) Do not move the resistor from the packaging unless use it.

(5) Under the above storage conditions, the resistor can be stored for at least 1 year.

Usage Suggestions

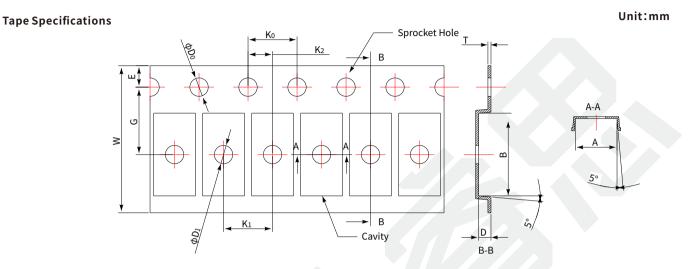
(1) Please protect the surface of the resistor during use. Prevent defects such as scratches, bumps, and oil stains on the surface.

(2) Do not use sharp tweezers to move the resistor. Scratches on the surface can cause resistance drift and resistor failure.

(3) When installing and using resistors, avoid the impact of mechanical stress on the resistor.

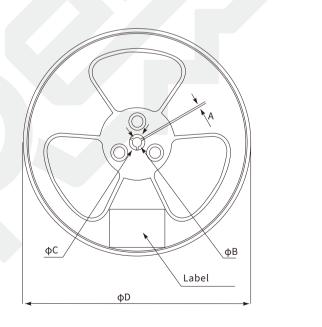
(4) The long-term operating power of resistors should be less than the rated power to avoid resistance drift caused by long-term overload.

(5) Please refer to the derating curve when operating under high temperature conditions or poor heat dissipation environment.


(6) If the operating conditions exceed the pulse specified in the pulse curve, a systematic evaluation is required.

(7) If the resistor is not used after being moved from the packaging, it should be stored under vacuum to avoid risks such as poor solderability caused by oxidation of the resistor.

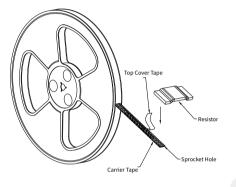
φE

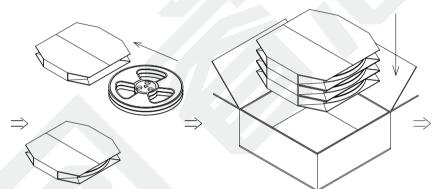

Packaging

Resistance	Α	В	φDο	φDı	Ko	K 1	K2	Е	G	w	D	т
0.3mΩ	3.30±0.2	6.60±0.2	1.5±0.1	1.5±0.1	4.00±0.1	4.00±0.1	2.00±0.1	1.75±0.1	5.50±0.05	12.00±0.2	1.50±0.1	0.25±0.05
0.5mΩ	3.30±0.2	6.60±0.2	1.5±0.1	1.5±0.1	4.00±0.1	4.00±0.1	2.00±0.1	1.75±0.1	5.50±0.05	12.00±0.2	1.50±0.1	0.25±0.05
1.0mΩ	3.30±0.2	6.60±0.2	1.5±0.1	1.5±0.1	4.00±0.1	4.00±0.1	2.00±0.1	1.75±0.1	5.50±0.05	12.00±0.2	0.90±0.1	0.23±0.05

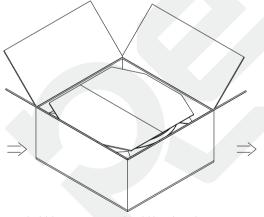
Reel Specifications

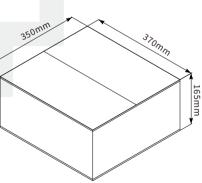
Unit:mm




Α	фВ	φC	φD	φE
1.5 Min.	13.0 +0.5/-0.2	20.2 Min.	330±2	100±2

Packaging


- (1) 4000 pcs. resistors are packed in a tape and wrapped in a reel;
- (2) Every 2 reels are packed by a cardboard sleeve case. The size of the cardboard is 335mm*340mm*37mm;
- (3) Place every 3 cases into a box (24000 pcs. / box);
- (4) Box size: 350mm*370mm*165mm.



1. 4000 pcs. resistors are packed in a tape and wrapped in a reel.

2. Every 2 reels are packed by a cardboard sleeve case.3. Place every 3 cases into a box The size of the cardboard is 335mm*340mm*37mm; (24000 pcs. / box).

4. bubble wrap or EPE should be placed to prevent products from shaking or vibration.

5. Box size: 350*370*165mm

Popular Part Numbers

Part Number	Size	Tolerance	Resistance	TCR	Power	Max. Operating Current
EBWM2512DL300S9	2512	±0.5%	0.3mΩ	±200ppm/°C	6W	140A
EBWM2512FL300S9	2512	±1.0%	0.3mΩ	±200ppm/°C	6W	140A
EBWM2512JL300S9	2512	±5.0%	0.3mΩ	±200ppm/°C	6W	140A
EBWM2512DL500S9	2512	±0.5%	0.5mΩ	±200ppm/°C	6W	109A
EBWM2512FL500S9	2512	±1.0%	0.5mΩ	±200ppm/°C	6W	109A
EBWM2512JL500S9	2512	±5.0%	0.5mΩ	±200ppm/°C	6W	109A
EBWM2512D1L00S9	2512	±0.5%	1.0mΩ	±200ppm/°C	6W	77A
EBWM2512F1L00S9	2512	±1.0%	1.0mΩ	±200ppm/°C	6W	77A
EBWM2512J1L00S9	2512	±5.0%	1.0mΩ	±200ppm/°C	6W	77A

Data Sheet No:E05015 Version:V3 Date:2024/03/14

EBWK2512

High-Precision Low-Inductance Alloy Current Sensing Resistor

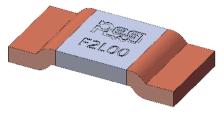
Resistance	2mΩ~5mΩ
Tolerance	±0.5%
TCR	±100ppm/°C
Rated Current	22A~50A

Applications

Automotive Electronics Precision Power Supply

Instrumentation

Testing & Measurement Equipment


Medical Equipment

Better Solution for Sustainable High End Manufacturing

Low-Inductance Alloy Current Sensing Resistor "Trimming Free" Technology, High Precision, Reliability

EBWK2512 series is based on a precision resistive alloy, welded by a specialized electron beam welding equipment. Both resistive alloy and welding equipment are independently designed and manufactured by C&B Electronics. Because of controlling the consistency of resistive alloys, precision processing ability and efficient welding, EBWK2512 achieves a maximum target tolerance of \pm 0.5% after stamping without trimming. TCR of EBWK2512 series within the temperature range of -55 °C to +170 °C is $\leq \pm 100$ ppm/°C. Inductance is < 3nH.

"Trimming Free" technology avoids the loss of rated current caused by trimming and also avoids current accumulation hotspots caused by trimmed notch, greatly improving the reliability of the product. Meanwhile, due to the improvement of welding quality, thermal EMF of the product is significantly reduced, improving its long-term stability.

EBWK2512 series, from raw materials, core equipment, to core processes, achieves independent and controllable production, stable quality, and timely delivery. If the standard specifications cannot meet your needs, please contact our sales for consultation. Resi is committed to providing the best precision resistor solutions to meet the needs of customers in instrumentation, medical equipment, automotive electronics, precision power supplies, formation & sorting of battery testing and measurement equipment and other fields.

Electrical Parameters

Size	Resistance	Rated Power (+70°C)	Max. Operating Current	Operating Temperature	TCR ppm/°C(+20°CRef)	Thermal Resistance*	Tolerance %
EBWK2512	2mΩ	5W	50A	-55°C~+170°C	±100(-55°C~+170°C)	13.2°C/W	$\pm 0.5 \\ \pm 1.0 \\ \pm 5.0$
EBWK2512	3mΩ	4W	36A	-55°C~+170°C	±100(-55°C~+170°C)	19.8°C/W	$\pm 0.5 \\ \pm 1.0 \\ \pm 5.0$
EBWK2512	4mΩ	3W	27A	-55°C~+170°C	±100(-55°C~+170°C)	24.3°C/W	$\pm 0.5 \\ \pm 1.0 \\ \pm 5.0$
EBWK2512	5mΩ	2.5W	22A	-55°C~+170°C	±100(-55°C~+170°C)	31.1°C/W	$\pm 0.5 \\ \pm 1.0 \\ \pm 5.0$

* Thermal Resistance: Refer to the internal thermal resistance between the center of the resistive alloy and the copper electrode.

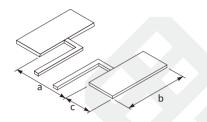
As the heat dissipation efficiency is influenced by operating environment, copper bus bars, PCB design, etc., this parameter is only for reference.

Applications

Inductance of EBWK2512 current sensing resistors is less than 3nH, suitable for AC, DC low and high frequency sampling circuits.

EBWK2512

High-Precision Low-Inductance Alloy Current Sensing Resistor

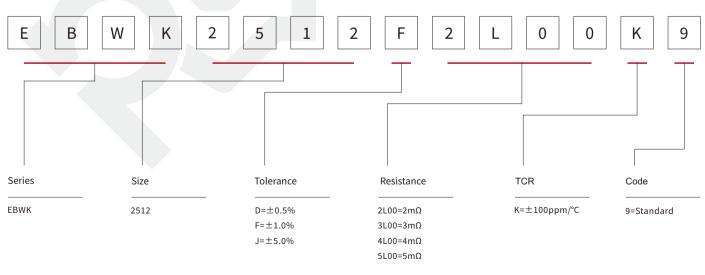


Unit:mm

Dimensions

Resistor

F2LOD WW Land Pattern



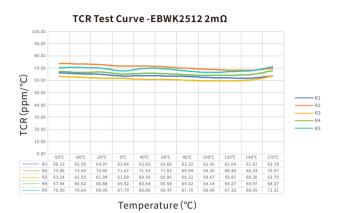
Not following the recommended land pattern design can seriously affect the temperature coefficient measurement results and current sensing accuracy!

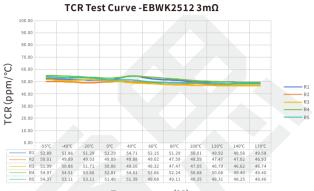
Resistance	L	W	Α	т	D	а	b	c	Packaging	Quantity Per Reel	Net Weight
2mΩ	6.3±0.3	3.0±0.3	1.3±0.3	0.6±0.2	0.35±0.2	3.9±0.2	3.4±0.25	1.8±0.25	Tape&Reel	4000pcs	0.11±0.05
3mΩ	6.3±0.3	3.0±0.3	1.3±0.3	0.4±0.2	0.35±0.2	3.9±0.2	3.4±0.25	1.8±0.25	Tape&Reel	4000pcs	0.07±0.05
4mΩ	6.3±0.3	3.0±0.3	1.3±0.3	0.33±0.15	0.35±0.2	3.9±0.2	3.4±0.25	1.8±0.25	Tape&Reel	4000pcs	0.06±0.05
5mΩ	6.3±0.3	3.0±0.3	1.3±0.3	0.25±0.15	0.35±0.2	3.9±0.2	3.4±0.25	1.8±0.25	Tape&Reel	4000pcs	0.05±0.05

Part Number Information

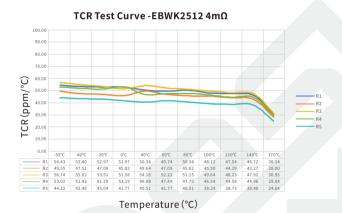
<code>Example:EBWK2512F2L00K9</code> (<code>EBWK 2512 $\pm 1.0\%$ 2m Ω ± 100 ppm/°C Standard)</code>

For higher/lower resistance, tighter tolerance, higher power, lower TCR and larger size, please contact us.

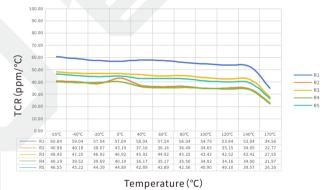



Performance

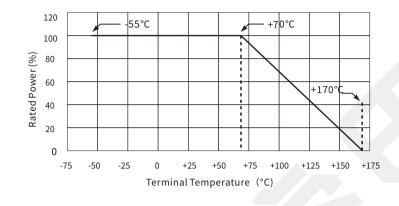
Test	Test Method	Standards	Typical	Max.	
High Temperature Storage	1000h@+170°C, unpowered	AEC-Q200 TEST 3 MIL-STD-202 Method 108	$\triangle R \leq \pm 0.5\%$	∆R≤±1.0%	
Thermal Shock	-55°C, 15min~ambient temperature<20s~+155°C, 15min, 1000 cycles	AEC-Q200 TEST 16 MIL-STD-202 Method 107	∆R≤±0.1%	∆R≤±0.5%	
Bias Humidity	+85°C, 85%RH, powered no less than 10% rated power for 1000h	AEC-Q200 TEST 7 MIL-STD-202 Method 103	△ R≤±0.2%	∆R≤±0.5%	
Load Life	2000h @ +70°C, rated power, 90min on, 30min off +70°C refers to terminal temperature	AEC-Q200 TEST 8 MIL-STD-202 Method 108	$\triangle R \leq \pm 0.5\%$	∆R≤±1.0%	
Resistance to Solvent	Immerse in solvent for 3 min and wipe 10 times. Three cycles of three solvents. Dry at ambient temperature after cleaning	AEC-Q200 TEST 12 MIL-STD-202 Method 215	Clear marking. No damage	visible	
Mechanical Shock	Half Sine Wave, peak acceleration 100g's, pulse duration 6ms, 3 times in each of six directions, on three different axes	AEC-Q200 TEST 13 MIL-STD-202 Method 213	∆R≤±0.01%	∆R≤±0.2%	
Vibration	10-2KHz, 5g's, 20min/cycle, 12 cycles in each directions of X Y Z	AEC-Q200 TEST 14 MIL-STD-202 Method 204	∆R≤±0.01%	∆R≤±0.2%	
Resistance to Solder Heat	+260°C tin bath for 10s	AEC-Q200 TEST 15 MIL-STD-202 Method 210	∆R≤±0.2%	∆R≤±0.5%	
Solderability	+245°C tin bath for 3s	AEC-Q200 TEST 18 IEC 60115-1 4.17	No visible damage 95% minimum cov		
TCR	-55°C and +170°C, +20°C Ref.	AEC-Q200 TEST 19 IEC 60115-1 4.8	Refer to tested cur max. value $\leq \pm 10$		
Substrate Bending	2mm. Duration: 60s.	AEC-Q200 TEST 21 AEC-Q200-005	∆R≤±0.1%	∆R≤±0.5%	
Short Time Overload	5x rated power, 5s	IEC 60115-1 4.13	∆R≤±0.1%	$\triangle R \leq \pm 0.5\%$	
Low Temperature Storage	-55°C for 96h, unpowered	IEC 60068-2-1	$\triangle R \leq \pm 0.1\%$	∆R≤±0.5%	
Moisture Resistance	Apply T=24 h/cycle, zero power, method 7a and 7b are not required	MIL-STD-202 Method 106	∆R≤±0.1%	∆R≤±0.5%	



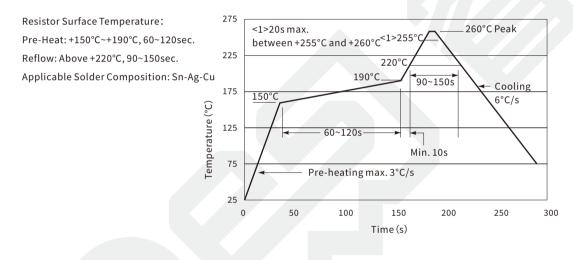
Temperature Coefficient of Resistance Test Curve

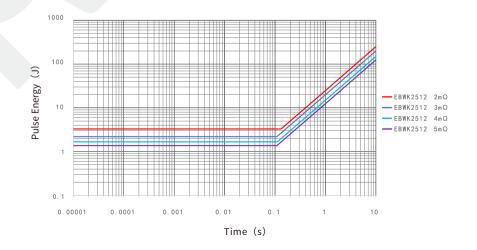


Temperature (°C)

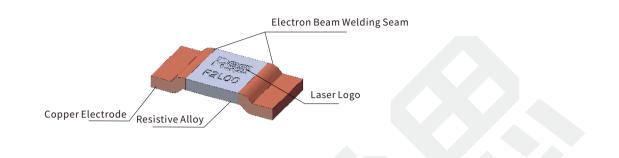


TCR Test Curve -EBWK25125mΩ




Derating Curve

Reflow Soldering Profile


Maximum Pulse Energy Curve

Construction

Marking

The first line (four digits) represents brand. The second line (five digits) represents tolerance and resistance.

Size	Illustration	Demonstration	
2512		RESI:Brand F:Tolerance 2L00:Resistance	

Storage Instructions

(1) Resistors should be stored at a temperature of 5 to 35 °C, with a humidity of <60% RH. The humidity should be kept as low as possible.

(2) Resistors should be protected from direct sunlight.

(3) Resistors should be stored in a clean and dry environment free of harmful gases (HCl, Sulfuric acid, H₂S, etc.)

(4) Do not move the resistor from the packaging unless use it.

(5) Under the above storage conditions, the resistor can be stored for at least 1 year.

Usage Suggestions

(1) Please protect the surface of the resistor during use. Prevent defects such as scratches, bumps, and oil stains on the surface.

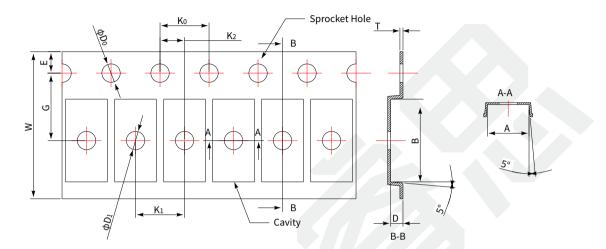
(2) Do not use sharp tweezers to move the resistor. Scratches on the surface can cause resistance drift and resistor failure.

(3) When installing and using resistors, avoid the impact of mechanical stress on the resistor.

(4) The long-term operating power of resistors should be less than the rated power to avoid resistance drift caused by long-term overload.

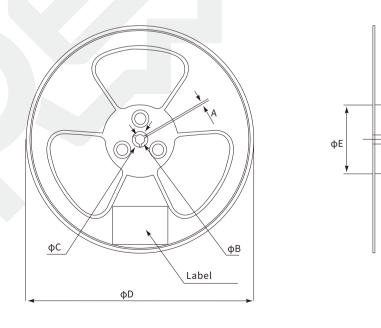
(5) Please refer to the derating curve when operating under high temperature conditions or poor heat dissipation environment.

(6) If the operating conditions exceed the pulse specified in the pulse curve, a systematic evaluation is required.


(7) If the resistor is not used after being moved from the packaging, it should be stored under vacuum to avoid risks such as poor solderability caused by oxidation of the resistor.

Packaging

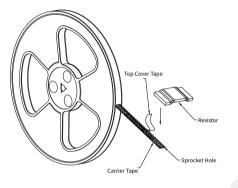
Tape Specifications

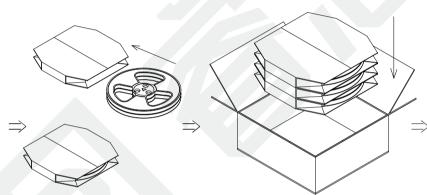

Unit:mm

Resistance	Α	В	φDo	φDı	Ko	K 1	K 2	E	G	w	D	т
2mΩ	3.40±0.2	6.75±0.2	1.5±0.1	1.5±0.1	4.00±0.1	4.00±0.1	2.00±0.1	1.75±0.1	5.50±0.05	12.00±0.2	1.00 ± 0.1	0.23±0.05
3mΩ	3.30±0.2	6.60±0.2	1.5±0.1	1.5±0.1	4.00±0.1	4.00±0.1	2.00 ± 0.1	1.75±0.1	5.50±0.05	12.00±0.2	0.90±0.1	0.23±0.05
4mΩ	3.20±0.2	6.50±0.2	1.5±0.1	1.5±0.1	4.00±0.1	4.00±0.1	2.00±0.1	1.75±0.1	5.50±0.05	12.00±0.2	0.73±0.1	0.23±0.05
5mΩ	3.20±0.2	6.50±0.2	1.5±0.1	1.5±0.1	4.00±0.1	4.00±0.1	2.00±0.1	1.75±0.1	5.50±0.05	12.00±0.2	0.73±0.1	0.23±0.05

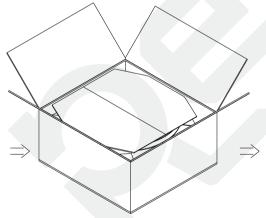
Reel Specifications

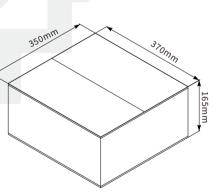
Unit:mm




Α	фВ	φC	φD	φE
1.5 Min.	13.0 +0.5/-0.2	20.2 Min.	330±2	100±2

Packaging


- (1) 4000 pcs. resistors are packed in a tape and wrapped in a reel;
- (2) Every 2 reels are packed by a cardboard sleeve case. The size of the cardboard is 335mm*340mm*37mm;
- (3) Place every 3 cases into a box (24000 pcs. / box);
- (4) Box size: 350mm*370mm*165mm.



1.4000 pcs. resistors are packed in a tape and wrapped in a reel.

2. Every 2 reels are packed by a cardboard sleeve case.3. Place every 3 cases into a box The size of the cardboard is 335mm*340mm*37mm; (24000 pcs. / box).

4. For the last box which is less than 24000 pcs., bubble wrap or EPE should be placed to prevent products from shaking or vibration.

5. Box size: 350mm*370mm*165mm

EBWK2512 High-Precision Low-Inductance Alloy Current Sensing Resistor

Popular Part Numbers

Part Number	Size	Tolerance	Resistance	TCR	Power	Max. Operating Current
EBWK2512J2L00K9	2512	±5.0%	2mΩ	±100ppm/°C	5W	50A
EBWK2512F2L00K9	2512	±1.0%	2mΩ	±100ppm/°C	5W	50A
EBWK2512D2L00K9	2512	±0.5%	2mΩ	±100ppm/°C	5W	50A
EBWK2512J3L00K9	2512	±5.0%	3mΩ	±100ppm/°C	4W	36A
EBWK2512F3L00K9	2512	±1.0%	3mΩ	±100ppm/°C	4W	36A
EBWK2512D3L00K9	2512	±0.5%	3mΩ	±100ppm/°C	4W	36A
EBWK2512J4L00K9	2512	±5.0%	4mΩ	±100ppm/°C	3W	27A
EBWK2512F4L00K9	2512	±1.0%	4mΩ	±100ppm/°C	3W	27A
EBWK2512D4L00K9	2512	±0.5%	4mΩ	±100ppm/°C	3W	27A
EBWK2512J5L00K9	2512	±5.0%	5mΩ	±100ppm/°C	2.5W	22A
EBWK2512F5L00K9	2512	±1.0%	5mΩ	±100ppm/°C	2.5W	22A
EBWK2512D5L00K9	2512	±0.5%	5mΩ	±100ppm/°C	2.5W	22A

Data Sheet No:E16014 Version:V3 Date:2024/03/14

PEWF2512

High-Precision Low-TCR Alloy Current Sensing Resistor

Resistance	1.5mΩ~5mΩ
Tolerance	±0.5%
TCR	±50ppm/°C
Rated Current	22A~57A

Applications

Automotive Electronics Precision Power Supply Instrumentation Formation & Sorting of Battery Medical Equipment

Better Solution for Sustainable High End Manufacturing

Low-TCR Alloy Current Sensing Resistor "Trimming Free" Technology, High Precision & Reliability

Introduction

PEWF2512 series is based on a precision resistive alloy, welded by a specialized electron beam welding equipment. Both resistive alloy and welding equipment are independently designed and manufactured by C&B Electronics. Because of controlling the consistency of resistive alloys, precision processing ability and efficient welding, PEWF2512 achieves a maximum target tolerance of $\pm 0.5\%$ after stamping without trimming. TCR of PEWF2512 series within the temperature range of -55 °C to +170 °C is $\leq \pm 50$ ppm/°C.

"Trimming Free" technology avoids the loss of rated current caused by trimming and also avoids current accumulation hotspots caused by trimmed notch, greatly improving the reliability of the product. Meanwhile, due to the improvement of welding quality, thermal EMF of the product is significantly reduced, improving its long-term stability.

PEWF2512 series, from raw materials, core equipment, to core processes, achieves independent and controllable production, stable quality, and timely delivery. If the standard specifications cannot meet your needs, please contact our sales for consultation. Resi is committed to providing the best precision resistor solutions to meet the needs of customers in instrumentation, medical equipment, automotive electronics, precision power supplies, formation & sorting of battery, testing and measurement equipment and other fields.

Electrical Parameters

2100

Size	Resistance	Rated Power (+70°C)	Max. Operating Current	Operating Temperature	TCR ppm/°C(+20°C Ref)	Thermal Resistance*	Tolerance %	
PEWF2512	1.5mΩ	5W	57A	-55°C~+170°C	±50(-55°C~+170°C)	9.7°C/W	$\pm 0.5 \\ \pm 1.0 \\ \pm 5.0$	
PEWF2512	2mΩ	5W	50A	-55°C~+170°C	±50(-55°C~+170°C)	13.4°C/W	$\pm 0.5 \\ \pm 1.0 \\ \pm 5.0$	
PEWF2512	3mΩ	4W	36A	-55°C~+170°C	±50(-55°C~+170°C)	19.8°C/W	$\pm 0.5 \\ \pm 1.0 \\ \pm 5.0$	
PEWF2512	4mΩ	ЗW	27A	-55°C~+170°C	±50(-55°C~+170°C)	26.9°C/W	$\pm 0.5 \\ \pm 1.0 \\ \pm 5.0$	
PEWF2512	5mΩ	2.5W	22A	-55°C~+170°C	±50(-55°C~+170°C)	33.6°C/W	$\pm 0.5 \\ \pm 1.0 \\ \pm 5.0$	

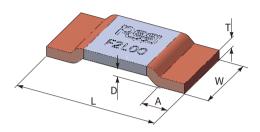
* Thermal Resistance: Refer to the internal thermal resistance between the center of the resistive alloy and the copper electrode.

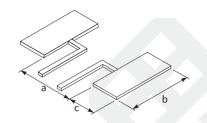
As the heat dissipation efficiency is influenced by operating environment, copper bus bars, PCB design, etc., this parameter is only for reference.

Applications

PEWF2512 is only suitable for DC low-frequency sampling circuits. Please contact us if you need AC or high-frequency working conditions.

PEWF2512

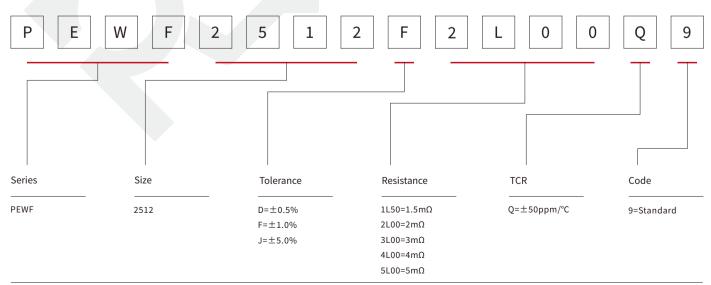

High-Precision Low-TCR Alloy Current Sensing Resistor


Unit:mm

Dimensions

Resistor

Land Pattern



Not following the recommended land pattern design can seriously affect the temperature coefficient measurement results and current sensing accuracy!

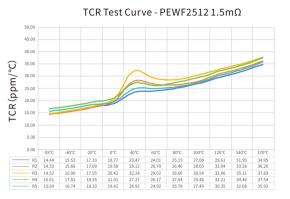
Resistance	L	W	A	т	D	а	b	c	Packaging	Quantity Per Reel	Net Weight
1.5mΩ	6.3±0.3	3.0±0.3	1.3±0.3	0.90±0.2	0.35±0.2	3.9±0.2	3.4±0.25	1.8±0.25	Tape&Reel	4000pcs	0.14±0.04
2mΩ	6.3±0.3	3.0±0.3	1.3±0.3	0.65±0.2	0.35±0.2	3.9±0.2	3.4±0.25	1.8±0.25	Tape&Reel	4000pcs	0.10±0.03
3mΩ	6.3±0.3	3.0±0.3	1.3±0.3	0.45±0.2	0.35±0.2	3.9±0.2	3.4±0.25	1.8±0.25	Tape&Reel	4000pcs	0.07±0.03
4mΩ	6.3±0.3	3.0±0.3	1.3±0.3	0.33±0.15	0.35±0.2	3.9±0.2	3.4±0.25	1.8±0.25	Tape&Reel	4000pcs	0.06±0.02
5mΩ	6.3±0.3	3.0±0.3	1.3±0.3	0.27±0.15	0.35±0.2	3.9±0.2	3.4±0.25	1.8±0.25	Tape&Reel	4000pcs	0.04±0.02

Part Number Information

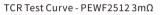
Example: PEWF2512F2L00Q9 (PEWF 2512 \pm 1.0% 2m Ω \pm 50ppm/°C Standard)

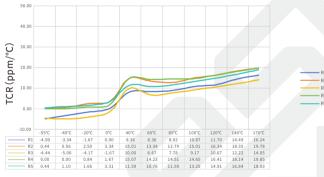
For higher/lower resistance, tighter tolerance, higher power, lower TCR and larger size, please contact us.

PEWF2512 High-Precision Low-TCR Alloy Current Sensing Resistor

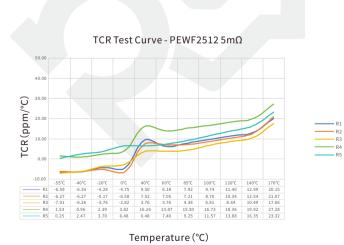

Performance

Test	Test Method	Standards	Typical	Max.
High Temperature Storage	1000h@+170°C, unpowered	AEC-Q200 TEST 3 MIL-STD-202 Method 108	$\triangle R \leq \pm 0.5\%$	∆R≤±1.0%
Thermal Shock	-55°C, 15min~ambient temperature<20s~+155°C, 15min, 1000 cycles	AEC-Q200 TEST 16 MIL-STD-202 Method 107	∆R≤±0.1%	∆R≤±0.5%
Bias Humidity	+85°C, 85%RH, powered no less than 10% rated power for 1000h	AEC-Q200 TEST 7 MIL-STD-202 Method 103	∆R≤±0.2%	△ R≤±0.5%
Load Life	2000h @ +70°C, rated power, 90min on, 30min off +70°C refers to terminal temperature	AEC-Q200 TEST 8 MIL-STD-202 Method 108	$\triangle R \leq \pm 0.5\%$	∆R≤±1.0%
Resistance to Solvent	Immerse in solvent for 3 min and wipe 10 times. Three cycles of three solvents. Dry at ambient temperature after cleaning	AEC-Q200 TEST 12 MIL-STD-202 Method 215	Clear marking. No damage	visible
Mechanical Shock	Half Sine Wave, peak acceleration 100g's, pulse duration 6ms, 3 times in each of six directions, on three different axes	AEC-Q200 TEST 13 MIL-STD-202 Method 213	∆R≤±0.01%	∆R≤±0.2%
Vibration	10-2KHz, 5g's, 20min/cycle, 12 cycles in each directions of X Y Z	AEC-Q200 TEST 14 MIL-STD-202 Method 204	△ R≤±0.01%	∆R≤±0.2%
Resistance to Solder Heat	+260°C tin bath for 10s	AEC-Q200 TEST 15 MIL-STD-202 Method 210	∆R≤±0.2%	∆R≤±0.5%
Solderability	+245°C tin bath for 3s	AEC-Q200 TEST 18 IEC 60115-1 4.17	No visible damage 95% minimum cov	
TCR	-55°C and +170°C, +20°C Ref.	AEC-Q200 TEST 19 IEC 60115-1 4.8	Refer to tested cur max. value $\leq \pm$ 50	,
Substrate Bending	2mm. Duration: 60s.	AEC-Q200 TEST 21 AEC-Q200-005	∆R≤±0.1%	∆R≤±0.5%
Short Time Overload	5x rated power, 5s	IEC 60115-1 4.13	∆R≤±0.1%	$\triangle R \leq \pm 0.5\%$
Low Temperature Storage	-55°C for 96h, unpowered	IEC 60068-2-1	∆R≤±0.1%	∆R≤±0.5%
Moisture Resistance	Apply T=24 h/cycle, zero power, method 7a and 7b are not required	MIL-STD-202 Method 106	∆R≤±0.1%	∆R≤±0.5%




High-Precision Low-TCR Alloy Current Sensing Resistor

Temperature Coefficient of Resistance Test Curve



Temperature (°C)

Temperature (°C)

TCR (ppm/°C) 25.00 20.00 15.00 10.00 5.00 0.00 85°C 20.57 20.25 21.36 26.41 22.61 -20°C 11.29 12.10 11.98 17.46 12.10 60°C 19.17 18.54 19.53 24.85 21.01 100°C 22.00 21.90 22.72 28.00 24.07 120°C 23.95 23.83 24.43 29.87 25.69 0°C 13.40 13.15 13.28 18.26 14.10 -55°C 9.11 9.12 9.45 14.47 -40°C 9.81 9.99 10.33 15.76 40°C 19.44 17.36 18.23 25.52 21.01 140°C 25.61 25.77 26.18 31.96 27.69 27.80 28.24 33.96 R1 R2 R3 R4 Temperature (°C)

TCR Test Curve - PEWF2512 2mΩ

50.0

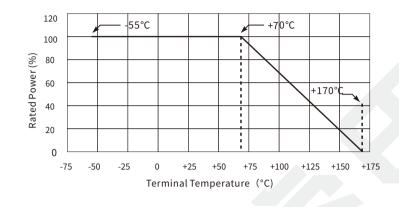
45.00

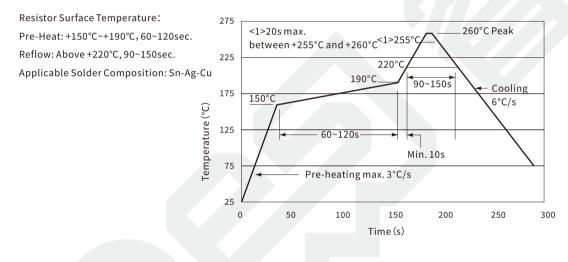
40.00

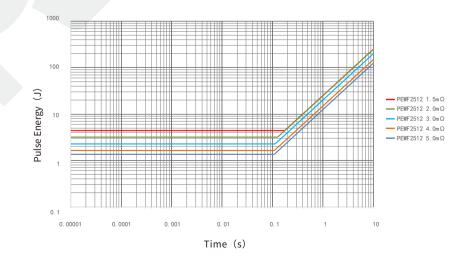
35.00

30.00

R2 R3 R4

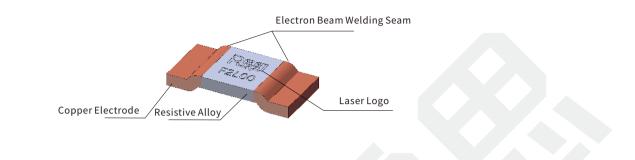

TCR Test Curve - PEWF2512 4mΩ


Temperature (°C)


Derating Curve

Reflow Soldering Profile

Maximum Pulse Energy Curve



PEWF2512

High-Precision Low-TCR Alloy Current Sensing Resistor

Construction

Marking

The first line (four digits) represents brand. The second line (five digits) represents tolerance and resistance.

Size	Illustration	Demonstration	
2512		RESI:Brand F:Tolerance 2L00:Resistance	

Storage Instructions

(1) Resistors should be stored at a temperature of 5 to 35 °C, with a humidity of <60% RH. The humidity should be kept as low as possible.

(2) Resistors should be protected from direct sunlight.

(3) Resistors should be stored in a clean and dry environment free of harmful gases (HCl, Sulfuric acid, H₂S, etc.)

(4) Do not move the resistor from the packaging unless use it.

(5) Under the above storage conditions, the resistor can be stored for at least 1 year.

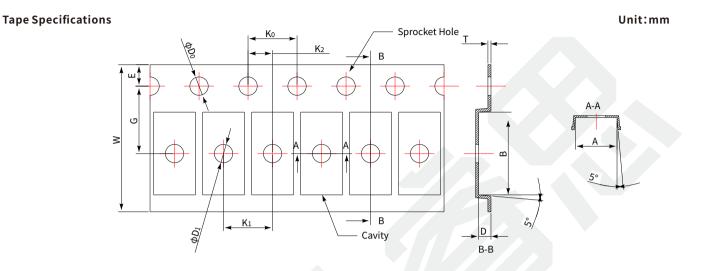
Usage Suggestions

(1) Please protect the surface of the resistor during use. Prevent defects such as scratches, bumps, and oil stains on the surface.

(2) Do not use sharp tweezers to move the resistor. Scratches on the surface can cause resistance drift and resistor failure.

(3) When installing and using resistors, avoid the impact of mechanical stress on the resistor.

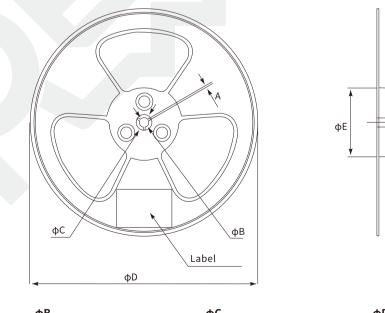
(4) The long-term operating power of resistors should be less than the rated power to avoid resistance drift caused by long-term overload.


(5) Please refer to the derating curve when operating under high temperature conditions or poor heat dissipation environment.

(6) If the operating conditions exceed the pulse specified in the pulse curve, a systematic evaluation is required.

(7) If the resistor is not used after being moved from the packaging, it should be stored under vacuum to avoid risks such as poor solderability caused by oxidation of the resistor.

Packaging

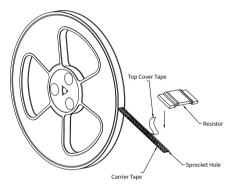


Resistance	Α	В	φDo	φDı	Ko	K1	K 2	E	G	w	D	т
1.5mΩ	3.30±0.2	6.60±0.2	1.5±0.1	1.5±0.1	4.00±0.1	4.00 ± 0.1	2.00±0.1	1.75±0.1	5.50±0.05	12.00±0.3	1.50 ± 0.1	0.25±0.05
2mΩ	3.40±0.2	6.75±0.2	1.5±0.1	1.5±0.1	4.00±0.1	4.00±0.1	2.00±0.1	1.75±0.1	5.50±0.05	12.00±0.3	1.00 ± 0.1	0.23±0.05
3mΩ	3.30±0.2	6.60±0.2	1.5±0.1	1.5±0.1	4.00±0.1	4.00±0.1	2.00 ± 0.1	1.75±0.1	5.50 ± 0.05	12.00±0.3	0.90±0.1	0.23±0.05
4mΩ	3.20±0.2	6.50±0.2	1.5±0.1	1.5±0.1	4.00±0.1	4.00±0.1	2.00 ± 0.1	1.75±0.1	5.50 ± 0.05	12.00±0.3	0.73±0.1	0.23±0.05
5mΩ	3.20±0.2	6.50±0.2	1.5±0.1	1.5±0.1	4.00±0.1	4.00±0.1	2.00±0.1	1.75±0.1	5.50±0.05	12.00±0.3	0.73±0.1	0.23±0.05

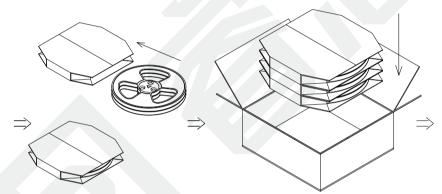
Reel Specifications

Α

Unit:mm

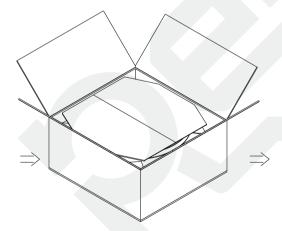

φВ φC φD φΕ 1.5 Min. 13.0 +0.5/-0.2 20.2 Min. 330±2 100 ± 2

PEWF2512 High-Precision Low-TCR Alloy Current Sensing Resistor

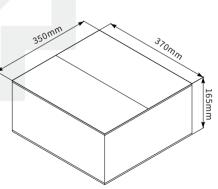


Packaging

- (1) 4000 pcs. resistors are packed in a tape and wrapped in a reel;
- (2) Every 2 reels are packed by a cardboard sleeve case. The size of the cardboard is 335mm*340mm*37mm;
- (3) Place every 3 cases into a box (24000 pcs. / box);
- (4) Box size: 350mm*370mm*165mm.



1.4000 pcs. resistors are packed in a tape and wrapped in a reel.



2. Every 2 reels are packed by a cardboard sleeve case. The size of the cardboard is 335mm*340mm*37mm;

3. Place every 3 cases into a box (24000 pcs. / box).

4. Bubble wrap or EPE should be placed to prevent products from shaking or vibration.

5. Box size: 350mm*370mm*165mm

PEWF2512 High-Precision Low-TCR Alloy Current Sensing Resistor

Popular Part Numbers

Part Number	Size	Tolerance	Resistance	TCR	Power	Max. Operating Current
PEWF2512D1L50Q9	2512	±0.5%	1.5mΩ	±50ppm/°C	5W	57A
PEWF2512F1L50Q9	2512	±1.0%	1.5mΩ	±50ppm/°C	5W	57A
PEWF2512J1L50Q9	2512	±5.0%	1.5mΩ	±50ppm/°C	5W	57A
PEWF2512D2L00Q9	2512	±0.5%	2mΩ	±50ppm/°C	5W	50A
PEWF2512F2L00Q9	2512	±1.0%	2mΩ	±50ppm/°C	5W	50A
PEWF2512J2L00Q9	2512	±5.0%	2mΩ	±50ppm/°C	5W	50A
PEWF2512D3L00Q9	2512	±0.5%	3mΩ	±50ppm/°C	4W	36A
PEWF2512F3L00Q9	2512	±1.0%	3mΩ	±50ppm/°C	4W	36A
PEWF2512J3L00Q9	2512	±5.0%	3mΩ	±50ppm/°C	4W	36A
PEWF2512D4L00Q9	2512	±0.5%	4mΩ	±50ppm/°C	3W	27A
PEWF2512F4L00Q9	2512	±1.0%	4mΩ	±50ppm/°C	ЗW	27A
PEWF2512J4L00Q9	2512	±5.0%	4mΩ	±50ppm/°C	3W	27A
PEWF2512D5L00Q9	2512	±0.5%	5mΩ	±50ppm/°C	2.5W	22A
PEWF2512F5L00Q9	2512	±1.0%	5mΩ	±50ppm/°C	2.5W	22A
PEWF2512J5L00Q9	2512	±5.0%	5mΩ	±50ppm/°C	2.5W	22A

DataSheet No.: E19016 Version: V2 Date: 2024/03/09

SEWF2512

High-Precision Low-TCR Alloy Current Sensing Resistor

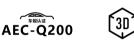
Resistance	3mΩ, 5mΩ
Tolerance	±0.5%
TCR	±25ppm/°C
Rated Current	22A~50A

Applications

Automotive Electronics Precision Power Supply Instrumentation Formation & Sorting of Battery Medical Equipment

Better Solution for Sustainable High End Manufacturing

High-Precision Low-TCR Alloy Current Sensing Resistor "Trimming Free" Technology, High Precision, Reliability



Introduction

SEWF2512 series is based on a precision resistive alloy, welded by a specialized electron beam welding equipment. Both resistive alloy and welding equipment are independently designed and manufactured by C&B Electronics. Because of controlling the consistency of resistive alloys, precision processing ability and efficient welding, SEWF2512 achieves a maximum target tolerance of $\pm 0.5\%$ after stamping without trimming. TCR of SEWF2512 series within the temperature range of -55 °C to +125 °C is $\leq \pm 25$ ppm/°C.

"Trimming Free" technology avoids the loss of rated current caused by trimming and also avoids current accumulation hotspots caused by trimmed notch, greatly improving the reliability of the product. Meanwhile, due to the improvement of welding quality, thermal EMF of the product is significantly reduced, improving its long-term stability.

SEWF2512 series, from raw materials, core equipment, to core processes, achieves independent and controllable production, stable quality, and timely delivery. If the standard specifications cannot meet your needs, please contact our sales for consultation. Resi is committed to providing the best precision resistor solutions to meet the needs of customers in instrumentation, medical equipment, automotive electronics, precision power supplies, formation & sorting of battery, testing and measurement equipment and other fields.

Electrical Parameters

Size	Resistance	Rated Power (+70°C)	Max. Operating Current	Operating Temperature	TCR ppm/°C(+20°C Ref)	Thermal Resistance*	Tolerance %
SEWF2512	3mΩ	4W	36A	-55°C~+170°C	±25(-55°C~+125°C)	19.7°C/W	$\pm 0.5 \\ \pm 1.0 \\ \pm 5.0$
SEWF2512	5mΩ	2.5W	22A	-55°C~+170°C	±25(-55°C~+125°C)	31.1°C/W	$\pm 0.5 \\ \pm 1.0 \\ \pm 5.0$

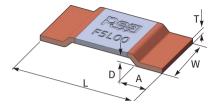
* Thermal Resistance: Refers to the internal thermal resistance between the center of the resistive alloy and the copper electrode.

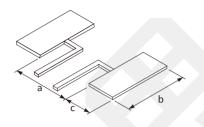
As the heat dissipation efficiency is influenced by operating environment, copper bus bars, PCB design, etc., this parameter is only for reference.

Applications

 ${\sf SEWF2512\ series\ is\ only\ applicable\ to\ DC\ low-frequency\ sampling\ circuit.\ If\ needs\ of\ AC\ or\ high-frequency\ applications\ are\ present,\ please\ contact\ us.}$

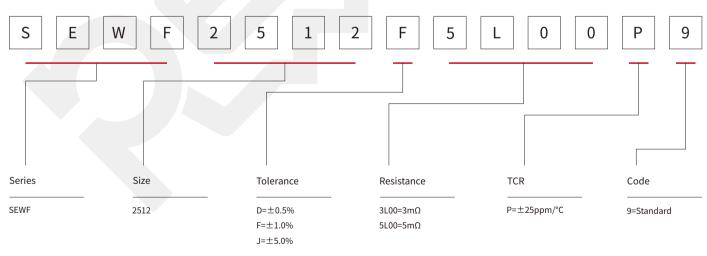
SEWF2512


High-Precision Low-TCR Alloy Current Sensing Resistor


Unit: mm

Dimensions

Resistor



Not following the recommended land pattern design can seriously affect the temperature coefficient measurement results and current sensing accuracy!

Resistance	L	W	Α	т	D	а	b	c	Packaging	Quantity Per Reel	Net Weight
3mΩ	6.3±0.3	3.0±0.3	1.3±0.3	0.45±0.2	0.35±0.2	3.9±0.2	3.4±0.25	1.8±0.25	Tape&Reel	4000pcs	0.07±0.03
5mΩ	6.3±0.3	3.0±0.3	1.3±0.3	0.27±0.15	0.35±0.2	3.9±0.2	3.4±0.25	1.8±0.25	Tape&Reel	4000pcs	0.04±0.02

Part Number Information

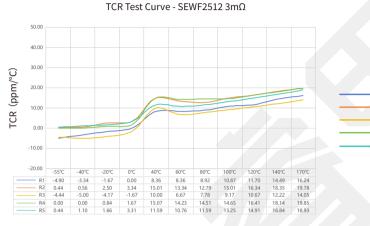
Example: SEWF2512F5L00P9 (SEWF 2512 \pm 1.0% 5m Ω \pm 25ppm/°C Standard)

For higher/lower resistance, tighter tolerance, higher power, lower TCR and larger size, please contact us.

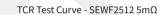
High-Precision Low-TCR Alloy Current Sensing Resistor

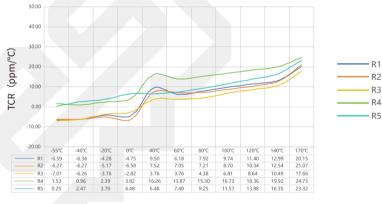
Performance

Test	Test Method	Standards	Typical	Max.	
High Temperature Storage	1000h@+170°C, unpowered	AEC-Q200 TEST 3 MIL-STD-202 Method 108	△ R≤±0.5%	∆R≤±1.0%	
Thermal Shock	-55°C, 15min~ambient temperature<20s~+155°C, 15min, 1000 cycles	AEC-Q200 TEST 16 MIL-STD-202 Method 107	∆R≤±0.1%	∆R≼±0.5%	
Bias Humidity	+85°C, 85%RH, powered no less than 10% rated power for 1000h	AEC-Q200 TEST 7 MIL-STD-202 Method 103	△ R≤±0.2%	∆R≼±0.5%	
Load Life	2000h @ +70°C, rated power, 90min on, 30min off +70°C refers to terminal temperature	AEC-Q200 TEST 8 MIL-STD-202 Method 108	∆R≤±0.5%	∆R≤±1.0%	
Resistance to Solvent	Immerse in solvent for 3 min and wipe 10 times. Three cycles of three solvents. Dry at ambient temperature after cleaning	AEC-Q200 TEST 12 MIL-STD-202 Method 215	Clear marking. N damage	o visible	
Mechanical Shock	Half Sine Wave, peak acceleration 100g's, pulse duration 6ms, 3 times in each of six directions, on three different axes	AEC-Q200 TEST 13 MIL-STD-202 Method 213	∆R≼±0.01%	∆R≼±0.2%	
Vibration	10-2KHz, 5g's, 20min/cycle, 12 cycles in each directions of X Y Z	AEC-Q200 TEST 14 MIL-STD-202 Method 204	∆R≤±0.01%	∆R≼±0.2%	
Resistance to Solder Heat	+260°C tin bath for 10s	AEC-Q200 TEST 15 MIL-STD-202 Method 210	∆R≤±0.2%	∆R≤±0.5%	
Solderability	+235°C tin bath for 3s	AEC-Q200 TEST 18 IEC 60115-1 4.17	No visible damage. 95% minimum coverage		
TCR	-55°C and +125°C, +20°C Ref.	AEC-Q200 TEST 19 IEC 60115-1 4.8	Refer to tested cu max. value ≤ 25p	,	
Substrate Bending	2mm. Duration: 60s.	AEC-Q200 TEST 21 AEC-Q200-005	∆R≤±0.1%	∆R≼±0.5%	
Short Time Overload	5x rated power, 5s	IEC 60115-1 4.13	∆R≤±0.1%	∆R≤±0.5%	
Low Temperature Storage	-55°C for 96h, unpowered	IEC 60068-2-1	∆R≼±0.1%	∆R≤±0.5%	
Moisture Resistance	Apply T=24 h/cycle, zero power, method 7a and 7b are not required	MIL-STD-202 Method 106	∆R≤±0.1%	∆R≤±0.5%	


R1 R2

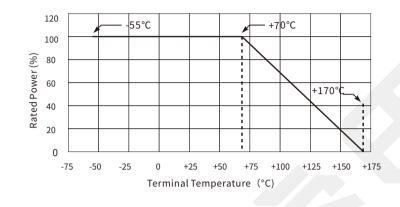
R3


R4 R5

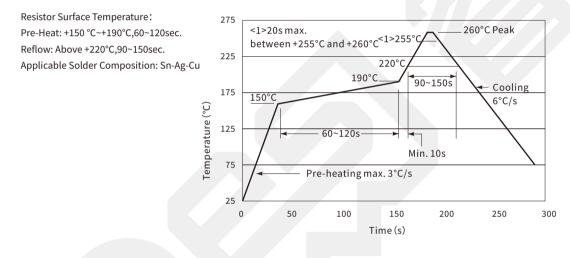

High-Precision Low-TCR Alloy Current Sensing Resistor

Temperature Coefficient of Resistance Test Curve

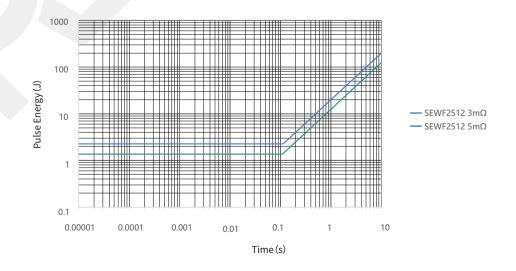
Temperature (°C)



Temperature (°C)

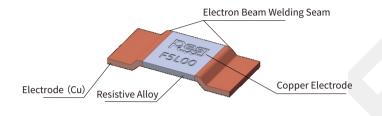


High-Precision Low-TCR Alloy Current Sensing Resistor


Derating Curve

Reflow Soldering Profile

Maximum Pulse Energy Curve



SEWF2512

High-Precision Low-TCR Alloy Current Sensing Resistor

Construction

Marking

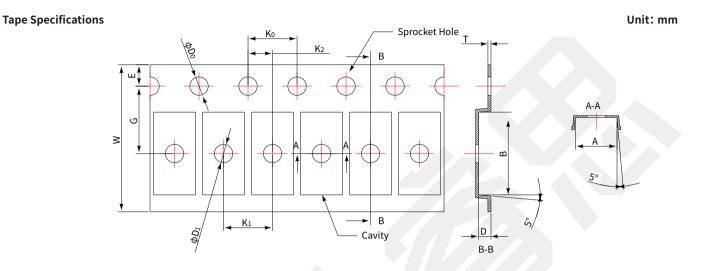
The first line (four digits) represents brand. The second line (five digits) represents tolerance and resistance.

Size	Illustration	Demonstration	
2512		RESI: Brand F: Tolerance 5L00: Resistance	

Storage Instructions

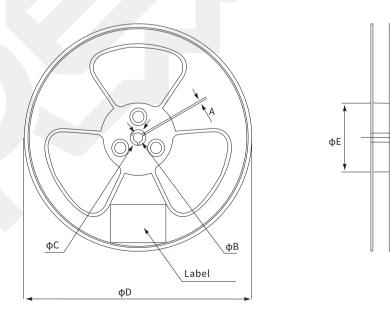
- (1) Resistors should be stored at a temperature of 5 to 35 °C, with a humidity of <60% RH. The humidity should be kept as low as possible.
- (2) Resistors should be protected from direct sunlight.
- (3) Resistors should be stored in a clean and dry environment free of harmful gases (HCl, Sulfuric acid, H₂S, etc.)
- (4) Do not move the resistor from the packaging unless use it.
- (5) Under the above storage conditions, the resistor can be stored for at least 1 year.

Usage Suggestions


- (1) Please protect the surface of the resistor during use. Prevent defects such as scratches, bumps, and oil stains on the surface.
- (2) Do not use sharp tweezers to move the resistor. Scratches on the surface can cause resistance drift and resistor failure.
- (3) When installing and using resistors, avoid the impact of mechanical stress on the resistor.
- (4) The long-term operating power of resistors should be \leq rated power to avoid resistance drift caused by long-term overload.
- (5) Please refer to the derating curve when operating under high temperature conditions or poor heat dissipation environment.
- (6) If the operating conditions exceed the pulse specified in the pulse curve, a systematic evaluation is required.

(7) If the resistor is not used after being moved from the packaging, it should be stored under vacuum to avoid risks such as poor welding caused by oxidation of the resistor.

SEWF2512 High-Precision Low-TCR Alloy Current Sensing Resistor


Packaging

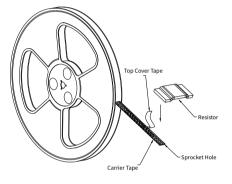
Resistance	Α	В	φDo	φDı	Ko	K1	K 2	E	G	w	D	т
3mΩ	3.30±0.1	6.60±0.1	1.5±0.1	1.5±0.1	4.00±0.1	4.00±0.1	2.00±0.1	1.75±0.1	5.50±0.05	12.00±0.2	0.90±0.1	0.23±0.05
5mΩ	3.20±0.1	6.50±0.1	1.5±0.1	1.5±0.1	4.00±0.1	4.00±0.1	2.00±0.1	1.75±0.1	5.50±0.05	12.00±0.2	0.73±0.1	0.23±0.05

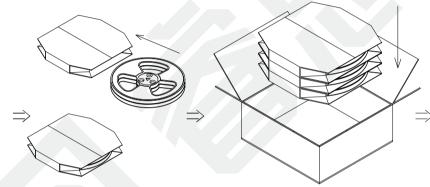
Reel Specifications

Unit: mm

Α	фВ	φC	φD	φE
1.5 Min.	13.0 +0.5/-0.2	20.2 Min.	330±2	100±2

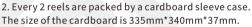
SEWF2512

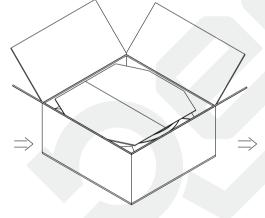

High-Precision Low-TCR Alloy Current Sensing Resistor



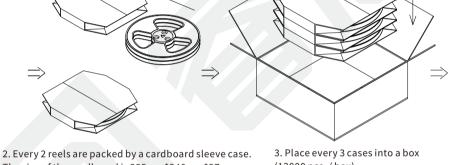
Packaging

- (1) 4000 pcs. resistors are packed in a tape and wrapped in a reel;
- (2) Every 2 reels are packed by a cardboard sleeve case. The size of the cardboard is 335mm*340mm*37mm;
- (3) Place every 3 cases into a box (12000 pcs. / box);


(4) Box size: 350mm*370mm*165mm.


370mm

1.4000 pcs. resistors are packed in a tape and wrapped in a reel.


350mn

(12000 pcs. / box).

4. For the last box which is less than 12000 pcs., bubble wrap or EPE should be placed to prevent products from shaking or vibration.

5. Box size: 350mm*370mm*165mm

165 mm

SEWF2512

High-Precision Low-TCR Alloy Current Sensing Resistor

Popular Part Numbers

Part Number	Size	Tolerance	Resistance	TCR	Power	Max. Operating Current
SEWF2512J3L00P9	2512	±5.0%	3mΩ	±25ppm/°C	4W	36A
SEWF2512F3L00P9	2512	±1.0%	3mΩ	±25ppm/°C	4W	36A
SEWF2512D3L00P9	2512	±0.5%	3mΩ	±25ppm/°C	4W	36A
SEWF2512J5L00P9	2512	±5.0%	5mΩ	±25ppm/°C	2.5W	22A
SEWF2512F5L00P9	2512	±1.0%	5mΩ	±25ppm/°C	2.5W	22A
SEWF2512D5L00P9	2512	±0.5%	5mΩ	±25ppm/°C	2.5W	22A

DataSheet No:E16012 Version:V3 Date:2024/03/17

PEWM3920

High-Precision Low-Inductance Alloy Current Sensing Resistor

Resistance	0.2mΩ~1.0mΩ
Tolerance	±0.5%
TCR	±100~±150ppm/°C
Rated Current	89A~244A

Applications

- Automotive Electronics
- Precision Power Supply
- Sorting & Formation of Battery
- **Electric Tools**
- Medical Equipment

Better Solution for Sustainable High End Manufacturing

Low-Inductance Alloy Current Sensing Resistor "Trimming Free" Technology, High Precision, Reliability

Introduction

PEWM3920 series is based on a precision resistive alloy, welded by a specialized electron beam welding equipment. Both resistive alloy and welding equipment are independently designed and manufactured by C&B Electronics. Because of controlling the consistency of resistive alloys, precision processing ability and efficient welding, PEWM3920 achieves a maximum target tolerance of \pm 0.5% after stamping without trimming. TCR of PEWM3920 series 0.3~1m Ω within the temperature range of +20 °C to +170 °C is $\leq \pm$ 100ppm/°C, 0.2m Ω TCR is within \pm 150ppm/°C. Inductance is < 3nH.

"Trimming Free" technology avoids the loss of rated current caused by trimming and also avoids current accumulation hotspots caused by trimmed notch, greatly improving the reliability of the product. Meanwhile, due to the improvement of welding quality, thermal EMF of the product is significantly reduced, improving its long-term stability.

PEWM3920 series, from raw materials, core equipment, to core processes, achieves independent and controllable production, stable quality, and timely delivery. If the standard specifications cannot meet your needs, please contact our sales for consultation. Resi is committed to providing the best precision resistor solutions to meet the needs of customers in instrumentation, medical equipment, automotive electronics, precision power supplies, testing and measurement equipment and other fields.

Size	Resistance	Rated Power (+70°C)	Max. Operating Current	Operating Temperature	TCR ppm/°C (+20°C Ref)	Thermal Resistance*	Tolerance %
PEWM3920	0.2mΩ	12W	244A	-55°C~+170°C	±150(+20°C~+170°C)	3.6°C/W	$\pm 0.5 \\ \pm 1.0 \\ \pm 5.0$
PEWM3920	0.3mΩ	10W	182A	-55°C~+170°C	±100 (+20°C~+170°C)	3.8°C/W	$\pm 0.5 \\ \pm 1.0 \\ \pm 5.0$
PEWM3920	0.5mΩ	9W	134A	-55°C~+170°C	±100(+20°C~+170°C)	6.3°C/W	$\pm 0.5 \\ \pm 1.0 \\ \pm 5.0$
PEWM3920	1.0mΩ	8W	89A	-55°C~+170°C	±100(+20°C~+170°C)	12.6°C/W	$\pm 0.5 \\ \pm 1.0 \\ \pm 5.0$

Electrical Parameters

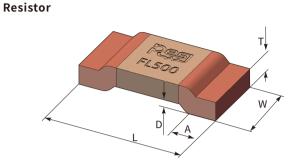
AEC-0200

* Thermal Resistance: Refer to the internal thermal resistance between the center of the resistive alloy and the copper electrode.

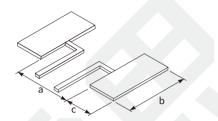
As the heat dissipation efficiency is influenced by operating environment, copper bus bars, PCB design, etc., this parameter is only for reference.

Applications

Inductance of PEWM3920 current sensing resistors is less than 3nH, suitable for AC, DC low and high frequency sampling circuits.


PEWM3920

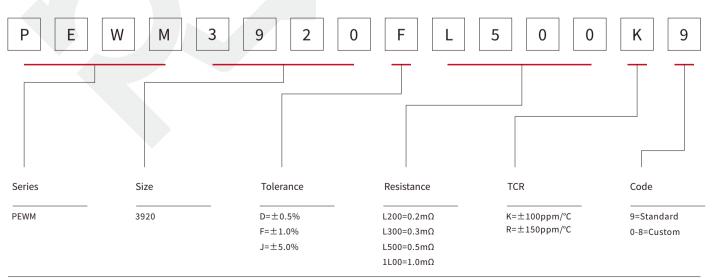
High-Precision Low-Inductance Alloy Current Sensing Resistor



Unit:mm

Dimensions

Land Pattern



Not following the recommended land pattern design can seriously affect the temperature coefficient measurement results and current sensing accuracy!

Resistance	L	W	Α	т	D	а	b	с	Packaging	Quantity Per Reel	Net Weight
0.2mΩ	10.0±0.3	5.2±0.3	2.0±0.3	1.4±0.2	0.5±0.2	5.6±0.1	6.2±0.2	2.7±0.2	Tape&Reel	2000pcs	0.65±0.1
0.3mΩ	10.0±0.3	5.2±0.3	2.0±0.3	1.3±0.2	0.5±0.2	5.6±0.1	6.2±0.2	2.7±0.2	Tape&Reel	2000pcs	0.59±0.1
0.5mΩ	10.0±0.3	5.2±0.3	2.0±0.3	0.8±0.2	0.5±0.2	5.6±0.1	6.2±0.2	2.7±0.2	Tape&Reel	2000pcs	0.36±0.1
1.0mΩ	10.0±0.3	5.2±0.3	2.0±0.3	0.4±0.2	0.5±0.2	5.6±0.1	6.2±0.2	2.7±0.2	Tape&Reel	2000pcs	0.18±0.05

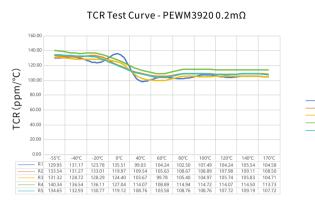
Part Number Information

Example: PEWM3920FL500K9 (PEWM 3920 $\pm 1.0\%$ 0.5m Ω $\pm 100 ppm/^{\circ}C$ Standard)

 $For higher/lower \ resistance, tighter \ tolerance, higher \ power, lower \ TCR \ and \ larger \ size, \ please \ contact \ us.$

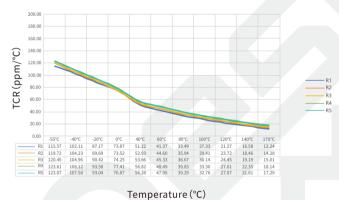
High-Precision Low-Inductance Alloy Current Sensing Resistor

Performance

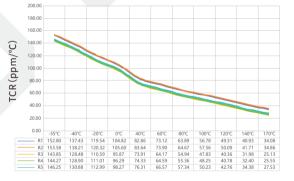

Test	Test Method	Standards	Typical	Max.
High Temperature Storage	1000h@+170°C, unpowered	AEC-Q200 TEST 3 MIL-STD-202 Method 108	∆R≤±0.5%	∆R≤±1.0%
Thermal Shock	-55°C, 15min~ambient temperature<20s~+155°C, 15min, 1000 cycles	AEC-Q200 TEST 16 MIL-STD-202 Method 107	∆R≤±0.1%	∆R≤±0.5%
Bias Humidity	+85°C, 85%RH, powered no less than 10% rated power for 1000h	AEC-Q200 TEST 7 MIL-STD-202 Method 103	△ R≤±0.2%	∆R≤±0.5%
Load Life	2000h @ +70°C, rated power, 90min on, 30min off +70°C refers to terminal temperature	AEC-Q200 TEST 8 MIL-STD-202 Method 108	△ R≤±0.5%	△R≤±1.0%
Resistance to Solvent	Immerse in solvent for 3 min and wipe 10 times. Three cycles of three solvents. Dry at ambient temperature after cleaning	AEC-Q200 TEST 12 MIL-STD-202 Method 215	Clear marking. No visible damage	
Mechanical Shock	Half Sine Wave, peak acceleration 100g's, pulse duration 6ms, 3 times in each of six directions, on three different axes	AEC-Q200 TEST 13 MIL-STD-202 Method 213	△ R≤±0.01%	∆R≤±0.2%
Vibration	10-2KHz, 5g's, 20min/cycle, 12 cycles in each directions of X Y Z	AEC-Q200 TEST 14 MIL-STD-202 Method 204	∆R≤±0.01%	∆R≤±0.2%
Resistance to Solder Heat	+260°C tin bath for 10s	AEC-Q200 TEST 15 MIL-STD-202 Method 210	∆R≤±0.2%	∆R≤±0.5%
Solderability	+245°C tin bath for 3s	AEC-Q200 TEST 18 IEC 60115-1 4.17	No visible damage. 95% minimum coverage	
TCR	+20°C and +170°C, +20°C Ref.	AEC-Q200 TEST 19 IEC 60115-1 4.8	Refer to tested curve, 0.2mΩ: max. value ≤ 150ppm/°(0.3~1mΩ: max. value ≤ 100ppm	
Substrate Bending	2mm. Duration: 60s.	AEC-Q200 TEST 21 AEC-Q200-005	∆R≤±0.1%	∆R≤±0.5%
Short Time Overload	5x rated power, 5s	IEC 60115-1 4.13	∆R≤±0.1%	∆R≤±0.5%
Low Temperature Storage	-55°C for 96h, unpowered	IEC 60068-2-1	∆R≤±0.1%	∆R≤±0.5%
Moisture Resistance	Apply T=24 h/cycle, zero power, method 7a and 7b are not required	MIL-STD-202 Method 106	∆R≤±0.1%	∆R≤±0.5%

- R3

Temperature Coefficient of Resistance Test Curve


Temperature (°C)

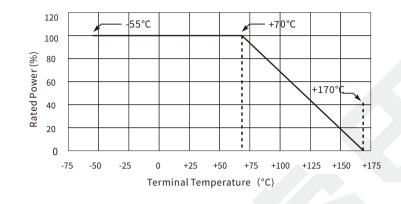
200.00 180.00 160.00 140.00 TCR (ppm/°C) 120.00 100.00 80.00 60.00 40.00 20.00 0.00 170°C 41.03 40.47 39.85 42.67 120°C 52.51 43.03 51.09 52.07 46.64 60°C 71.08 71.71 70.13 72.96 67.46 100°C 54.77 55.45 55.52 56.79 50.80 140°C 45.71 45.03 46.20 47.53 42.20 -40°C 130.45 131.75 133.58 132.10 127.70 -20°C 119.58 119.24 120.22 117.73 114.93 0°C 113.72 113.41 115.21 112.75 106.60 40°C 73.59 70.04 73.47 71.30 68.29 80°C 60.76 60.04 59.55 62.46 56.08 -55°C R1 146.28 R2 148.54 R3 150.50 R4 148.57 R5 143.47


TCR Test Curve - PEWM3920 0.3mΩ

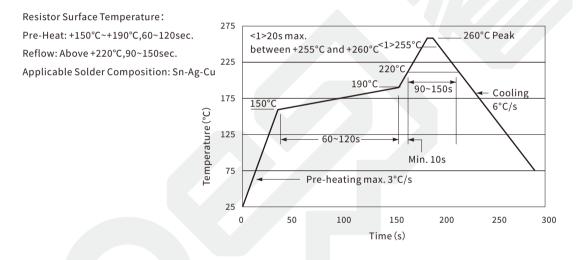
Temperature (°C)

TCR Test Curve - PEWM3920 0.5mΩ

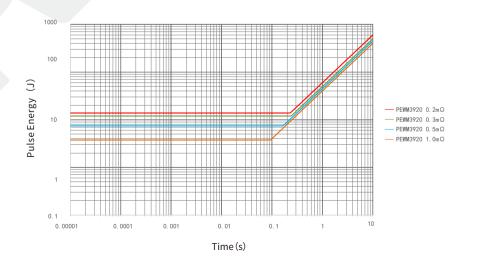
TCR Test Curve - PEWM3920 1mΩ



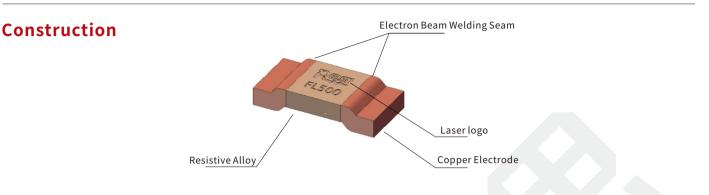
Temperature (°C)



High-Precision Low-Inductance Alloy Current Sensing Resistor


Derating Curve

Reflow Soldering Profile


Maximum Pulse Energy Curve

PEWM3920

High-Precision Low-Inductance Alloy Current Sensing Resistor

Marking

The first line (four digits) represents brand. The second line (five digits) represents tolerance and resistance.

Size	Illustration	Demonstration
3920	1250 C	RESI:Brand F:Tolerance L500:Resistance

Storage Instructions

(1) Resistors should be stored at a temperature of 5 to 35 °C, with a humidity of <60% RH. The humidity should be kept as low as possible.

(2) Resistors should be protected from direct sunlight.

(3) Resistors should be stored in a clean and dry environment free of harmful gases (HCl, Sulfuric acid, H2S, etc.)

(4) Do not move the resistor from the packaging unless use it.

(5) Under the above storage conditions, the resistor can be stored for at least 1 year.

Usage Suggestions

(1) Please protect the surface of the resistor during use. Prevent defects such as scratches, bumps, and oil stains on the surface.

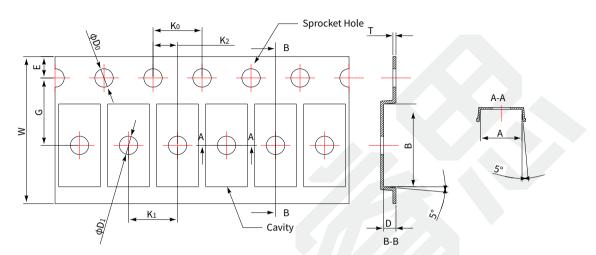
(2) Do not use sharp tweezers to move the resistor. Scratches on the surface can cause resistance drift and resistor failure.

(3) When installing and using resistors, avoid the impact of mechanical stress on the resistor.

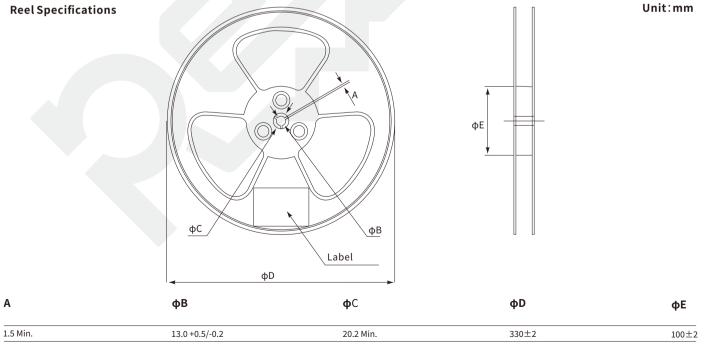
(4) The long-term operating power of resistors should be \leq rated power to avoid resistance drift caused by long-term overload.

(5) Please refer to the derating curve when operating under high temperature conditions or poor heat dissipation environment.

(6) If the operating conditions exceed the pulse specified in the pulse curve, a systematic evaluation is required.


(7) If the resistor is not used after being moved from the packaging, it should be stored under vacuum to avoid risks such as poor welding caused by oxidation of the resistor.

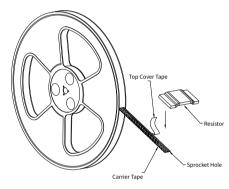
Packaging

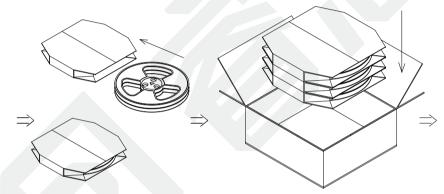

Tape Specifications

Unit:mm

Resistance	Α	В	φDο	φDı	Ko	K1	K 2	Е	G	W	D	т
0.2mΩ	5.5±0.2	10.5±0.2	1.5±0.1	1.5±0.1	4.00±0.1	8.00±0.1	2.00±0.1	1.75±0.1	7.50±0.1	16.00±0.3	2.7±0.1	0.3±0.05
0.3mΩ	5.5±0.2	10.5±0.2	1.5±0.1	1.5±0.1	4.00±0.1	8.00±0.1	2.00±0.1	1.75±0.1	7.50±0.1	16.00±0.3	2.1±0.1	0.3±0.05
0.5mΩ	5.5±0.2	10.5±0.2	1.5±0.1	1.5±0.1	4.00±0.1	8.00±0.1	2.00±0.1	1.75±0.1	7.50±0.1	16.00±0.3	1.5±0.1	0.3±0.05
1.0mΩ	5.5±0.2	10.5±0.2	1.5±0.1	1.5±0.1	4.00±0.1	8.00±0.1	2.00±0.1	1.75±0.1	7.50±0.1	16.00±0.3	1.5±0.1	0.3±0.05

Unit:mm

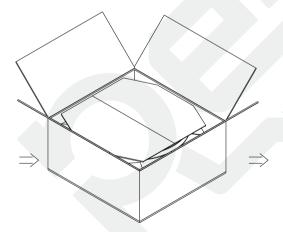

PEWM3920



Packaging

- (1) 2000 pcs. resistors are packed in a tape and wrapped in a reel;
- (2) Every 2 reels are packed by a cardboard sleeve case. The size of the cardboard is 335mm*340mm*37mm;
- (3) Place every 3 cases into a box (12000 pcs. / box);
- (4) Box size: 350mm*370mm*165mm.

1. 2000 pcs. resistors are packed in a tape and wrapped in a reel.



370mm

2. Every 2 reels are packed by a cardboard sleeve case. The size of the cardboard is 335mm*340mm*37mm;

350mn

3. Place every 3 cases into a box (12000 pcs. / box).

4. Bubble wrap or EPE should be placed to prevent products from shaking or vibration.

165mm

5. Box size: 350mm*370mm*165mm

Popular Part Numbers

Part Number	Size	Tolerance	Resistance	TCR	Power	Max. Operating Current
PEWM3920DL200R9	3920	±0.5%	0.2mΩ	≤±150ppm/°C	12.0W	244A
PEWM3920DL300K9	3920	±0.5%	0.3mΩ	≤±100ppm/°C	10.0W	182A
PEWM3920DL500K9	3920	±0.5%	0.5mΩ	≤±100ppm/°C	9.0W	134A
PEWM3920D1L00K9	3920	±0.5%	1.0mΩ	≤±100ppm/°C	8.0W	89A
PEWM3920FL200R9	3920	±1.0%	0.2mΩ	≤±150ppm/°C	12.0W	244A
PEWM3920FL300K9	3920	±1.0%	0.3mΩ	≤±100ppm/°C	10.0W	182A
PEWM3920FL500K9	3920	±1.0%	0.5mΩ	≤±100ppm/°C	9.0W	134A
PEWM3920F1L00K9	3920	±1.0%	1.0mΩ	≤±100ppm/°C	8.0W	89A
PEWM3920JL200R9	3920	±5.0%	0.2mΩ	≤±150ppm/°C	12.0W	244A
PEWM3920JL300K9	3920	±5.0%	0.3mΩ	≤±100ppm/°C	10.0W	182A
PEWM3920JL500K9	3920	±5.0%	0.5mΩ	≤±100ppm/°C	9.0W	134A
PEWM3920J1L00K9	3920	±5.0%	1.0mΩ	≤±100ppm/°C	8.0W	89A

Data Sheet No:E16013 Version:V4 Date:2024/03/09

PEWK3920

High-Precision Low-Inductance Alloy Current Sensing Resistor

Resistance	1mΩ~5mΩ
Tolerance	±0.5%
TCR	±50ppm/°C
Rated Current	24A~89A

Applications

Automotive Electronics Precision Power Supply Instrumentation Testing & Measurement Equipment Medical Equipment

Better Solution for Sustainable High End Manufacturing

Low-Inductance Alloy Current Sensing Resistor "Trimming Free" Technology, High Precision, Reliability

welding equipment. Both resistive alloy and welding equipment are independently designed and manufactured by C&B Electronics. Because of controlling the consistency of resistive alloys, precision processing ability and efficient welding, PEWK3920 achieves a maximum target tolerance of $\pm 0.5\%$ after stamping without trimming. TCR of PEWK3920 series within the temperature range of -55 °C to +170 °C is $\leq \pm 50$ ppm/°C. Inductance is < 3 nH.

PEWK3920 series is based on a precision resistive alloy, welded by a specialized electron beam

"Trimming Free" technology avoids the loss of rated current caused by trimming and also avoids current accumulation hotspots caused by trimmed notch, greatly improving the reliability of the product. Meanwhile, due to the improvement of welding quality, thermal EMF of the product is significantly reduced, improving its long-term stability.

PEWK3920 series, from raw materials, core equipment, to core processes, achieves independent and controllable production, stable quality, and timely delivery. If the standard specifications cannot meet your needs, please contact our sales for consultation. Resi is committed to providing the best precision resistor solutions to meet the needs of customers in instrumentation, medical equipment, automotive electronics, precision power supplies, formation & sorting of battery testing and measurement equipment and other fields.

Size	Resistance	Rated Power (+70°C)	Max. Operating Current	Operating Temperature	TCR ppm/°C(+20°C Ref)	Thermal Resistance*	Toleranc %
PEWK3920	1mΩ	8₩	89A	-55°C~+170°C	±50 (-55°C~+170°C)	7.6°C/W	$\pm 0.5 \\ \pm 1.0 \\ \pm 5.0$
PEWK3920	2mΩ	6W	54A	-55°C~+170°C	±50 (-55°C~+170°C)	15.4°C/W	$\pm 0.5 \\ \pm 1.0 \\ \pm 5.0$
PEWK3920	3mΩ	5W	40A	-55°C~+170°C	±50 (-55°C~+170°C)	23.1°C/W	$\pm 0.5 \\ \pm 1.0 \\ \pm 5.0$
PEWK3920	4mΩ	4W	30A	-55°C~+170°C	±50 (-55°C~+170°C)	28.9°C/W	$\pm 0.5 \\ \pm 1.0 \\ \pm 5.0$
PEWK3920	5mΩ	3W	24A	-55°C~+170°C	±50(-55°C~+170°C)	36.5°C/W	±0.5 ±1.0 ±5.0

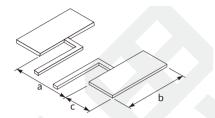
Electrical Parameters

* Thermal Resistance: Refer to the internal thermal resistance between the center of the resistive alloy and the copper electrode.

As the heat dissipation efficiency is influenced by operating environment, copper bus bars, PCB design, etc., this parameter is only for reference.

Applications

Inductance of PEWK3920 current sensing resistors is less than 3nH, suitable for AC, DC low and high frequency sampling circuits.

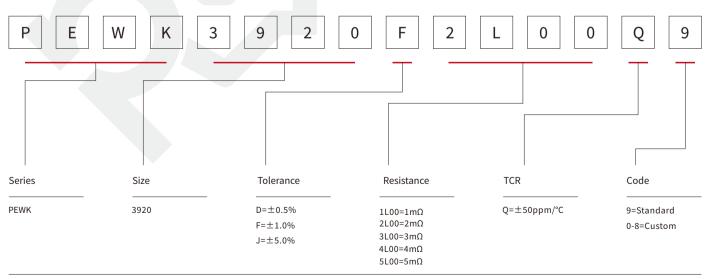

Unit:mm

Dimensions

Resistor

P A W

Land Pattern



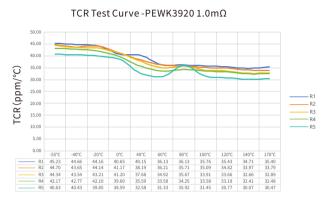
Not following the recommended land pattern design can seriously affect the temperature coefficient measurement results and current sensing accuracy!

Resistance	L	W	Α	т	D	а	b	c	Packaging	Quantity Per Reel	Net Weight
1mΩ	10.0±0.3	5.2±0.3	2.0±0.3	1.3±0.2	0.5±0.2	5.6±0.1	6.2±0.2	2.7±0.2	Tape&Reel	2000pcs	0.59±0.1
2mΩ	10.0±0.3	5.2±0.3	2.0±0.3	0.6±0.2	0.5±0.2	5.6±0.1	6.2±0.2	2.7±0.2	Tape&Reel	2000pcs	0.27±0.1
3mΩ	10.0±0.3	5.2±0.3	2.0±0.3	0.4±0.2	0.5±0.2	5.6±0.1	6.2±0.2	2.7±0.2	Tape&Reel	2000pcs	0.18±0.1
4mΩ	10.0±0.3	5.2±0.3	2.0±0.3	0.33±0.15	0.5±0.2	5.6±0.1	6.2±0.2	2.7±0.2	Tape&Reel	2000pcs	0.15±0.1
5mΩ	10.0±0.3	5.2±0.3	2.0±0.3	0.25±0.15	0.5±0.2	5.6±0.1	6.2±0.2	2.7±0.2	Tape&Reel	2000pcs	0.11±0.1

Part Number Information

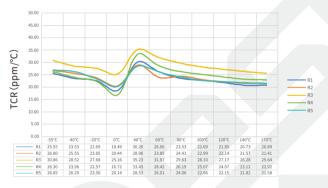
Example:PEWK3920F2L00Q9 (PEWK 3920 $\pm 1.0\%$ 2.0mO $\pm 50 ppm/^{\circ}C$ Standard)

For higher/lower resistance, tighter tolerance, higher power, lower TCR and larger size, please contact us.

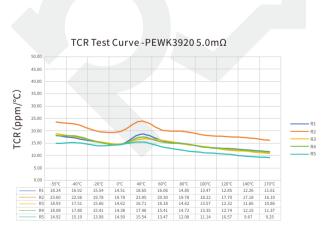


Performance

Test	Test Method	Standards	Typical	Max.
High Temperature Storage	1000h@+170°C, unpowered	AEC-Q200 TEST 3 MIL-STD-202 Method 108	$\triangle R \leq \pm 0.5\%$	∆R≤±1.0%
Thermal Shock	-55°C, 15min~ambient temperature<20s~+155°C, 15min, 1000 cycles	AEC-Q200 TEST 16 MIL-STD-202 Method 107	∆R≤±0.1%	∆R≼±0.5%
Bias Humidity	+85°C, 85%RH, powered no less than 10% rated power for 1000h	AEC-Q200 TEST 7 MIL-STD-202 Method 103	△ R≤±0.2%	△ R≤±0.5%
Load Life	2000h @ +70°C, rated power, 90min on, 30min off +70°C refers to terminal temperature	AEC-Q200 TEST 8 MIL-STD-202 Method 108	$\triangle R \leq \pm 0.5\%$	∆R≤±1.0%
Resistance to Solvent	Immerse in solvent for 3 min and wipe 10 times. Three cycles of three solvents. Dry at ambient temperature after cleaning	AEC-Q200 TEST 12 MIL-STD-202 Method 215	Clear marking. No damage	visible
Mechanical Shock	Half Sine Wave, peak acceleration 100g's, pulse duration 6ms, 3 times in each of six directions, on three different axes	AEC-Q200 TEST 13 MIL-STD-202 Method 213	∆R≤±0.01%	∆R≤±0.2%
Vibration	10-2KHz, 5g's, 20min/cycle, 12 cycles in each directions of X Y Z	AEC-Q200 TEST 14 MIL-STD-202 Method 204	△R≤±0.01%	∆R≤±0.2%
Resistance to Solder Heat	+260°C tin bath for 10s	AEC-Q200 TEST 15 MIL-STD-202 Method 210	∆R≤±0.2%	∆R≤±0.5%
Solderability	+245°C tin bath for 3s	AEC-Q200 TEST 18 IEC 60115-1 4.17	No visible damage. 95% minimum coverage	
TCR	-55°C and +170°C, +20°C Ref.	AEC-Q200 TEST 19 IEC 60115-1 4.8	Refer to tested curve, max. value ≤ ±50ppm/°C	
Substrate Bending	2mm. Duration: 60s.	AEC-Q200 TEST 21 AEC-Q200-005	△ R≤±0.1%	∆R≤±0.5%
Short Time Overload	5x rated power, 5s	IEC 60115-1 4.13	∆R≤±0.1%	∆R≤±0.5%
Low Temperature Storage	-55°C for 96h, unpowered	IEC 60068-2-1	∆R≤±0.1%	∆R≤±0.5%
Moisture Resistance	Apply T=24 h/cycle, zero power, method 7a and 7b are not required	MIL-STD-202 Method 106	$\triangle R \leq \pm 0.1\%$	∆R≤±0.5%



Temperature Coefficient of Resistance Test Curve



Temperature (°C)

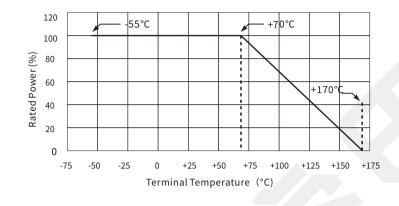
TCR Test Curve -PEWK3920 3.0mΩ

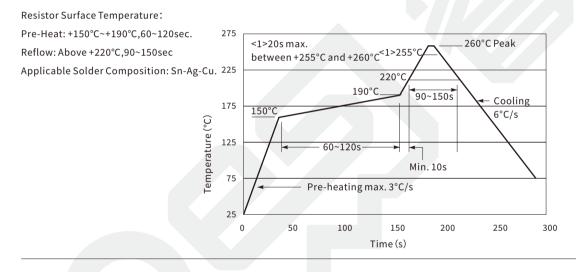
Temperature (°C)

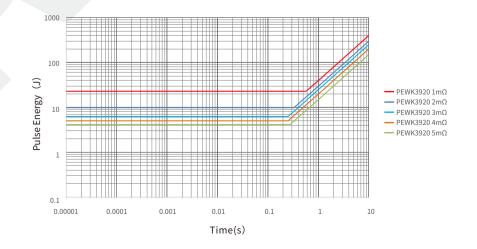
Temperature (°C)

TCR Test Curve -PEWK3920 2.0mΩ 50.00 45.00 40.0r 35.00 ICR (ppm/°C) 30.00 25.00 20.00 15.00 10.00 5.00 0.00 -20°C 37.12 31.93 30.61 29.47 34.49 -40°C 37.94 29.48 31.01 30.29 36.14 -55°C 38.27 30.13 30.69 30.78 34.82 0°C 34.64 27.02 26.93 24.56 32.03 40°C 47.02 39.30 46.52 39.30 41.88 60°C 40.83 31.93 35.50 35.61 35.72 80°C 37.12 29.48 32.65 31.11 33.67 100°C 35.88 28.86 31.22 29.47 32.65 120°C 34.64 28.00 29.87 28.00 30.55 140°C 33.41 26.61 28.97 27.43 29.98 170°C 32.88 26.67 28.33 26.31 29.21 R1 R2 R3 R4 R5

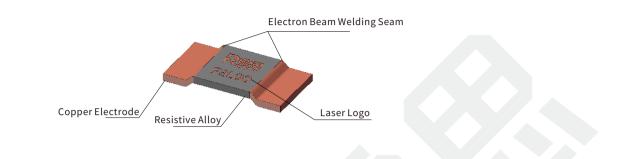
Temperature (°C)


TCR Test Curve -PEWK3920 4.0mΩ


Temperature (°C)


Derating Curve

Reflow Soldering Profile



Maximum Pulse Energy Curve

Construction

Marking

The first line (four digits) represents brand. The second line (five digits) represents tolerance and resistance.

Size	Illustration	Demonstration	
3920		RESI:Brand F:Tolerance 2L00:Resistance	

Storage Instructions

(1) Resistors should be stored at a temperature of 5 to 35 °C, with a humidity of <60% RH. The humidity should be kept as low as possible.

(2) Resistors should be protected from direct sunlight.

(3) Resistors should be stored in a clean and dry environment free of harmful gases (HCl, Sulfuric acid, H₂S, etc.)

(4) Do not move the resistor from the packaging unless use it.

(5) Under the above storage conditions, the resistor can be stored for at least 1 year.

Usage Suggestions

(1) Please protect the surface of the resistor during use. Prevent defects such as scratches, bumps, and oil stains on the surface.

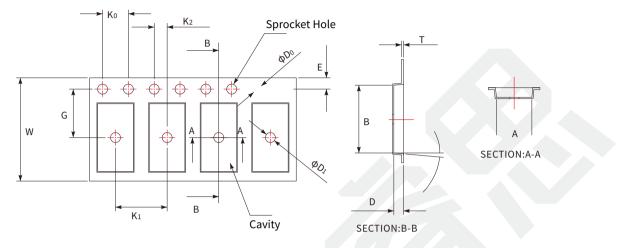
(2) Do not use sharp tweezers to move the resistor. Scratches on the surface can cause resistance drift and resistor failure.

(3) When installing and using resistors, avoid the impact of mechanical stress on the resistor.

(4) The long-term operating power of resistors should be less than the rated power to avoid resistance drift caused by long-term overload.

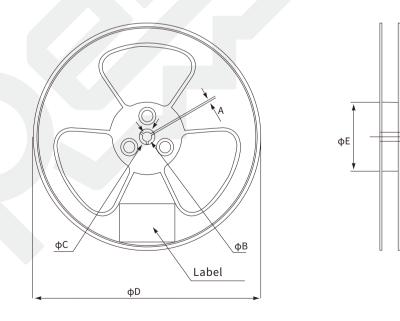
(5) Please refer to the derating curve when operating under high temperature conditions or poor heat dissipation environment.

(6) If the operating conditions exceed the pulse specified in the pulse curve, a systematic evaluation is required.


(7) If the resistor is not used after being moved from the packaging, it should be stored under vacuum to avoid risks such as poor solderability caused by oxidation of the resistor.

Packaging

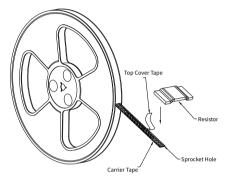
Tape Specifications

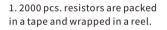

Unit:mm

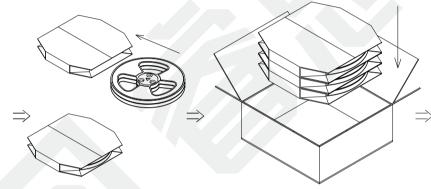
Resistance	Α	В	φDo	φDı	Κο	Kı	K2	E	G	w	D	т
1.0mΩ	5.5±0.2	10.5±0.2	1.5±0.1	1.5±0.1	4.0±0.1	8.0±0.1	2.0±0.1	1.75±0.1	7.5±0.1	16.0±0.3	2.1±0.1	0.3±0.05
2.0mΩ	5.5±0.2	10.5±0.2	1.5±0.1	1.5±0.1	4.0±0.1	8.0±0.1	2.0±0.1	1.75±0.1	7.5 ± 0.1	16.0±0.3	1.5±0.1	0.3±0.05
3.0mΩ	5.5±0.2	10.5±0.2	1.5±0.1	1.5±0.1	4.0±0.1	8.0±0.1	2.0±0.1	1.75±0.1	7.5±0.1	16.0±0.3	1.5±0.1	0.3±0.05
4.0mΩ	5.65±0.2	10.41±0.2	1.5±0.1	1.5±0.1	4.0±0.1	8.0±0.1	2.0±0.1	1.75±0.1	7.5±0.1	16.0±0.3	1.14±0.1	0.4±0.05
5.0mΩ	5.65±0.2	10.41±0.2	1.5 ± 0.1	1.5±0.1	4.0±0.1	8.0±0.1	2.0±0.1	1.75±0.1	7.5±0.1	16.0±0.3	1.14±0.1	0.4±0.05

Reel Specifications

Unit:mm

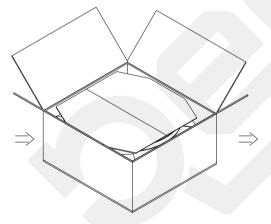


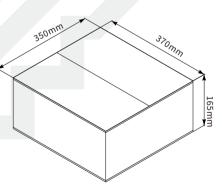

Α	фВ	φC	φD	φE
1.5 Min.	13.0 +0.5/-0.2	20.2 Min.	330±2	100±2



Packaging

- (1) 2000 pcs. resistors are packed in a tape and wrapped in a reel;
- (2) Every 2 reels are packed by a cardboard sleeve case. The size of the cardboard is 335mm*340mm*37mm;
- (3) Place every 3 cases into a box (12000 pcs. / box);
- (4) Box size: 350mm*370mm*165mm.





2. Every 2 reels are packed by a cardboard sleeve case. The size of the cardboard is 335mm*340mm*37mm.

3. Place every 3 cases into a box (12000 pcs. / box).

4. For the last box which is less than 12000 pcs., bubble wraps or EPE should be placed to prevent products from shaking or vibration.

5. Box size: 350mm*370mm*165mm

PEWK3920 High-Precision Low-Inductance Alloy Current Sensing Resistor

Popular Part Numbers

Part Number	Size	Tolerance	Resistance	TCR	Power	Max. Operating Current
PEWK3920D1L00Q9	3920	±0.5%	1.0mΩ	±50ppm/°C	8W	89A
PEWK3920F1L00Q9	3920	±1.0%	1.0mΩ	±50ppm/°C	8W	89A
PEWK3920J1L00Q9	3920	±5.0%	1.0mΩ	±50ppm/°C	8W	89A
PEWK3920D2L00Q9	3920	±0.5%	2.0mΩ	±50ppm/°C	6W	54A
PEWK3920F2L00Q9	3920	±1.0%	2.0mΩ	±50ppm/°C	6W	54A
PEWK3920J2L00Q9	3920	±5.0%	2.0mΩ	±50ppm/°C	6W	54A
PEWK3920D3L00Q9	3920	±0.5%	3.0mΩ	±50ppm/°C	5W	40A
PEWK3920F3L00Q9	3920	±1.0%	3.0mΩ	±50ppm/°C	5W	40A
PEWK3920J3L00Q9	3920	±5.0%	3.0mΩ	±50ppm/°C	5W	40A
PEWK3920D4L00Q9	3920	±0.5%	4.0mΩ	±50ppm/°C	4W	30A
PEWK3920F4L00Q9	3920	±1.0%	4.0mΩ	±50ppm/°C	4W	30A
PEWK3920J4L00Q9	3920	±5.0%	4.0mΩ	±50ppm/°C	4W	30A
PEWK3920D5L00Q9	3920	±0.5%	5.0mΩ	±50ppm/°C	3W	24A
PEWK3920F5L00Q9	3920	±1.0%	5.0mΩ	±50ppm/°C	3W	24A
PEWK3920J5L00Q9	3920	±5.0%	5.0mΩ	±50ppm/°C	3W	24A

DataSheet No.:E19015 Version:V4 Date:2024/03/09

SEWF3920

High-Precision Low-TCR Alloy Current Sensing Resistor

Resistance	1.0mΩ~5.0mΩ
Tolerance	±0.5%
TCR	≤±25ppm/°C
Rated Current	25A~89A

Applications

Automotive Electronics Precision Power Supply Instrumentation Formation & Sorting of Battery Medical Equipment

Better Solution for Sustainable High End Manufacturing

High-Precision Low-TCR Alloy Current Sensing Resistor "Trimming Free" Technology, High Precision, Low TCR, Reliability Introduction

SEWF3920 series is based on a precision resistive alloy, welded by a specialized electron beam welding equipment. Both resistive alloy and welding equipment are independently designed and manufactured by C&B Electronics. Because of controlling the consistency of resistive alloys, precision processing ability and efficient welding, SEWF3920 achieves a maximum target tolerance of $\pm 0.5\%$ after stamping without trimming. TCR of SEWF3920 series within the temperature range of -55 °C to +170 °C is $\leq \pm 25$ ppm/°C.

"Trimming Free" technology avoids the loss of rated current caused by trimming and also avoids current accumulation hotspots caused by trimmed notch, greatly improving the reliability of the product. Meanwhile, due to the improvement of welding quality, thermal EMF of the product is significantly reduced, improving its long-term stability.

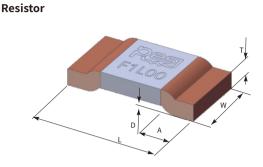
SEWF3920 series, from raw materials, core equipment, to core processes, achieves independent and controllable production, stable quality, and timely delivery. If the standard specifications cannot meet your needs, please contact our sales for consultation. Resi is committed to providing the best precision resistor solutions to meet the needs of customers in instrumentation, medical equipment, automotive electronics, precision power supplies, formation & sorting of battery, testing and measurement equipment and other fields.

Size	Resistance	Rated Power (+70°C)	Max. Operating Current	Operating Temperature	TCR ppm/°C(+20°C Ref)	Thermal Resistance*	Tolerance %
SEWF3920	1mΩ	8W	89A	-55°C~+170°C	±25(-55°C~+170°C)	7.8°C/W	$\pm 0.5 \\ \pm 1.0 \\ \pm 5.0$
SEWF3920	2mΩ	6W	55A	-55°C~+170°C	±25(-55°C~+170°C)	15.4°C/W	$\pm 0.5 \\ \pm 1.0 \\ \pm 5.0$
SEWF3920	3mΩ	5W	41A	-55°C~+170°C	±25(-55°C~+170°C)	23°C/W	$\pm 0.5 \\ \pm 1.0 \\ \pm 5.0$
SEWF3920	4mΩ	4W	32A	-55°C~+170°C	±25(-55°C~+170°C)	31.1°C/W	$\pm 0.5 \\ \pm 1.0 \\ \pm 5.0$
SEWF3920	5mΩ	ЗW	25A	-55°C~+170°C	±25(-55°C~+170°C)	38.4°C/W	$\pm 0.5 \\ \pm 1.0 \\ \pm 5.0$

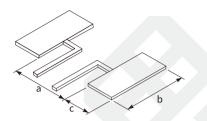
Electrical Parameters

* Thermal Resistance: Refers to the internal thermal resistance between the center of the resistive alloy and the copper electrode.

As the heat dissipation efficiency is influenced by operating environment, copper bus bars, PCB design, etc., this parameter is only for reference.


Applications

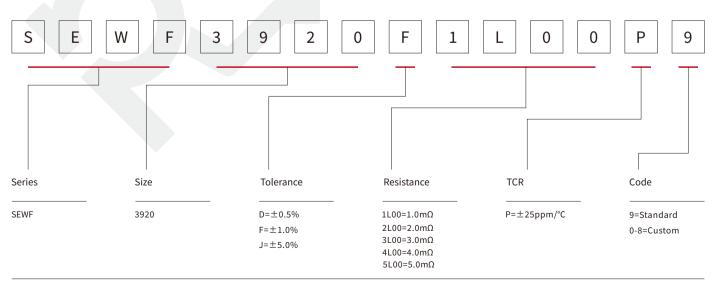
SEWF3920 series is only applicable to DC low-frequency sampling circuit. If needs of AC or high-frequency applications are present, please contact us.



Unit:mm

Dimensions

Land Pattern



Not following the recommended land pattern design can seriously affect the temperature coefficient measurement results and current sensing accuracy!

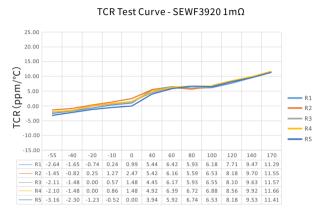
Resistance	L	W	Α	т	D	а	b	c	Packaging	Quantity Per Reel	Net Weight
1mΩ	10.0±0.3	5.2±0.3	2.0±0.3	1.3±0.2	0.5±0.2	5.6±0.1	6.2±0.2	2.7±0.2	Tape&Reel	2000pcs	0.56±0.1
2mΩ	10.0±0.3	5.2±0.3	2.0±0.3	0.65±0.2	0.5±0.2	5.6±0.1	6.2±0.2	2.7±0.2	Tape&Reel	2000pcs	0.28±0.1
3mΩ	10.0±0.3	5.2±0.3	2.0±0.3	0.45±0.2	0.5±0.2	5.6±0.1	6.2±0.2	2.7±0.2	Tape&Reel	2000pcs	0.20±0.1
4mΩ	10.0±0.3	5.2±0.3	2.0±0.3	0.33±0.15	0.5±0.2	5.6±0.1	6.2±0.2	2.7±0.2	Tape&Reel	2000pcs	0.15±0.1
5mΩ	10.0±0.3	5.2±0.3	2.0±0.3	0.27±0.15	0.5±0.2	5.6±0.1	6.2±0.2	2.7±0.2	Tape&Reel	2000pcs	0.12±0.05

Part Number Information

<code>Example:SEWF3920F1L00P9</code> (<code>SEWF 3920 \pm 1.0% 1.0m\Omega \pm 25ppm/°C Standard</code>)

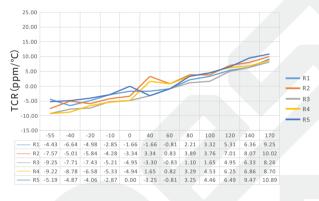
For higher/lower resistance, tighter tolerance, higher power, lower TCR and larger size, please contact us.

87 /

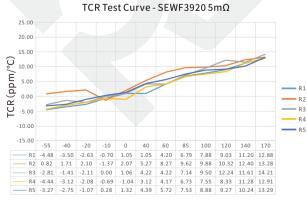


Performance

Test	Test Method	Standards	Typical	Max.
High Temperature Storage	1000h@+170°C, unpowered	AEC-Q200 TEST 3 MIL-STD-202 Method 108	∆R≤±0.5%	∆R≤±1.0%
Thermal Shock	-55°C, 15min~ambient temperature<20s~+155°C, 15min, 1000 cycles	AEC-Q200 TEST 16 MIL-STD-202 Method 107	∆R≤±0.1%	∆R≤±0.5%
Bias Humidity	+85°C, 85%RH, powered no less than 10% rated power for 1000h	AEC-Q200 TEST 7 MIL-STD-202 Method 103	△ R≤±0.2%	△R≤±0.5%
Load Life	2000h @ +70°C, rated power, 90min on, 30min off +70°C refers to terminal temperature	AEC-Q200 TEST 8 MIL-STD-202 Method 108	∆R≤±0.5%	△R≤±1.0%
Resistance to Solvent	Immerse in solvent for 3 min and wipe 10 times. Three cycles of three solvents. Dry at ambient temperature after cleaning	AEC-Q200 TEST 12 MIL-STD-202 Method 215	Clear marking. N damage	o visible
Mechanical Shock	Half Sine Wave, peak acceleration 100g's, pulse duration 6ms, 3 times in each of six directions, on three different axes	AEC-Q200 TEST 13 MIL-STD-202 Method 213	∆R≤±0.01%	∆R≼±0.2%
Vibration	10-2KHz, 5g's, 20min/cycle, 12 cycles in each directions of X Y Z	AEC-Q200 TEST 14 MIL-STD-202 Method 204	∆R≤±0.01%	∆R≼±0.2%
Resistance to Solder Heat	+260°C tin bath for 10s	AEC-Q200 TEST 15 MIL-STD-202 Method 210	∆R≤±0.2%	∆R≼±0.5%
Solderability	+235°C tin bath for 3s	AEC-Q200 TEST 18 IEC 60115-1 4.17	No visible damag 95% minimum co	·
TCR	-55°C and +170°C, +20°C Ref.	AEC-Q200 TEST 19 IEC 60115-1 4.8	Refer to tested cı max. value ≤ 25p	,
Substrate Bending	2mm. Duration: 60s.	AEC-Q200 TEST 21 AEC-Q200-005	∆R≤±0.1%	∆R≤±0.5%
Short Time Overload	5x rated power, 5s	IEC 60115-1 4.13	∆R≤±0.1%	∆R≤±0.5%
Low Temperature Storage	-55°C for 96h, unpowered	IEC 60068-2-1	∆R≤±0.1%	∆R≤±0.5%
Moisture Resistance	Apply T=24 h/cycle, zero power, method 7a and 7b are not required	MIL-STD-202 Method 106	∆R≤±0.1%	∆R≤±0.5%
Low Temperature Operating	-55°C, unpowered for 1h, load rated power for 45min, unpowered for 15min	IEC 60068-2-1 4.36	∆R≤±0.1%	∆R≤±0.5%



Temperature Coefficient of Resistance Test Curve



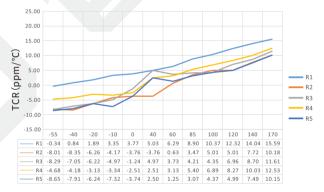
Temperature (°C)

TCR Test Curve - SEWF3920 $3m\Omega$

Temperature (°C)

Temperature (°C)

25.00 20.00 15.00 TCR (ppm/°C) 10.00 5.00 R1 0.00 R2 R3 -5.00 R4 -10.00 R5 -15.00 -55 -40 -10 0 40 60 80 100 120 140 170 -20 - R1 -4.02 -3.35 -2.51 -1.05 0.00 7.54 8.37 11.30 11.55 13.40 15.07 8.79 R1 -4.02 -5.55 R2 -8.65 -6.65 R3 -5.34 -3.34
 -7.48
 -5.24
 -2.49
 0.00
 0.00
 0.83
 3.12
 5.49
 6.65
 8.91

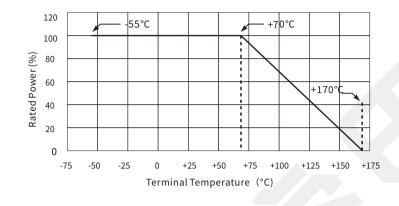

 -2.50
 -0.56
 0.00
 5.00
 6.25
 7.51
 8.76
 9.51
 12.93
 15.01

 -2.51
 -1.28
 0.00
 2.51
 3.77
 5.86
 6.91
 8.04
 10.89
 12.92
 R4 -6.03 -5.86 R5 -7.37 -6.70 -5.03 -3.26 -2.51 8.57 7.31 6.89 7.31 8.07 9.41 11.44

TCR Test Curve - SEWF3920 2mΩ

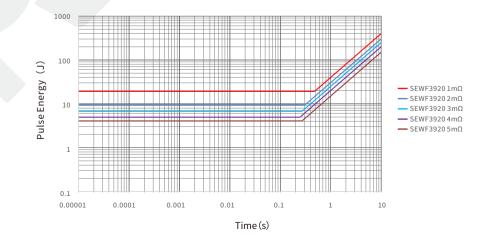
Temperature (°C)

TCR Test Curve - SEWF3920 4mΩ



Temperature (°C)

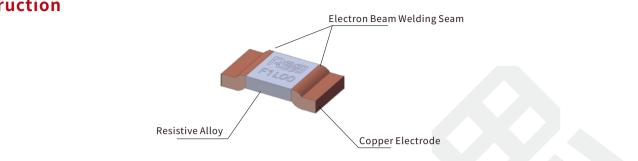
C&B Electronics Shenzhen CO., LTD. | www.resistor.today | resi@cbeureka.com | Tel:0755-82899519


Derating Curve

Reflow Soldering Profile

Resistor Surface Temperature: Pre-Heat: +150°C~+190°C,60~120sec. 275 260°C Peak <1>20s max. Reflow: Above +220°C,90~150sec. between +255°C and +260°C^{<1>255°} Applicable Solder Composition: Sn-Ag-Cu 225 220° 190°C 90~150s Cooling 175 150°C 6°C/s Temperature (°C) 125 60~120s Min. 10s 75 Pre-heating max. 3°C/s 25 0 50 100 150 200 250 300 Time (s)

Maximum Pulse Energy Curve



SEWF3920

High-Precision Low-TCR Alloy Current Sensing Resistor

Construction

Marking

The first line (four digits) represents brand. The second line (five digits) represents tolerance and resistance.

Size	Illustration	Demonstration
3920		RESI:Brand F:Tolerance 1L00:Resistance

Storage Instructions

(1) Resistors should be stored at a temperature of 5 to 35 °C, with a humidity of <60% RH. The humidity should be kept as low as possible.

(2) Resistors should be protected from direct sunlight.

(3) Resistors should be stored in a clean and dry environment free of harmful gases (HCl, Sulfuric acid, H2S, etc.)

(4) Do not move the resistor from the packaging unless use it.

(5) Under the above storage conditions, the resistor can be stored for at least 1 year.

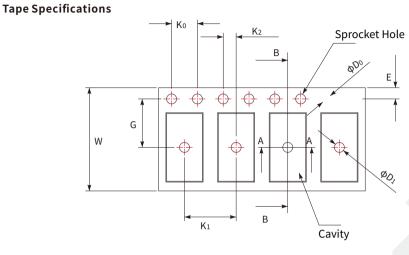
Usage Suggestions

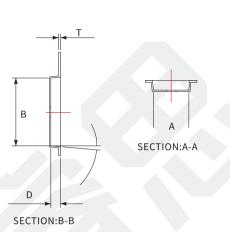
(1) Please protect the surface of the resistor during use. Prevent defects such as scratches, bumps, and oil stains on the surface.

(2) Do not use sharp tweezers to move the resistor. Scratches on the surface can cause resistance drift and resistor failure.

(3) When installing and using resistors, avoid the impact of mechanical stress on the resistor.

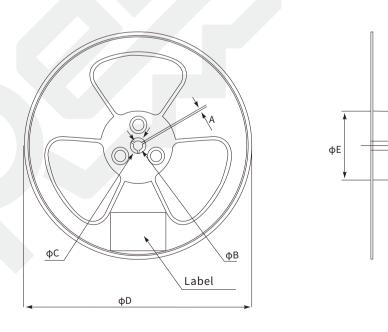
(4) The long-term operating power of resistors should be ≤ rated power to avoid resistance drift caused by long-term overload.


(5) Please refer to the derating curve when operating under high temperature conditions or poor heat dissipation environment.


(6) If the operating conditions exceed the pulse specified in the pulse curve, a systematic evaluation is required.

(7) If the resistor is not used after being moved from the packaging, it should be stored under vacuum to avoid risks such as poor welding caused by oxidation of the resistor.

Packaging

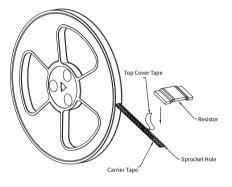


Resistance	Α	В	φDο	φD1	Ko	K1	K2	E	G	w	D	т
1mΩ	5.5±0.2	10.5±0.2	1.5±0.1	1.5±0.1	4.00±0.1	8.00±0.1	2.00±0.1	1.75±0.1	7.50±0.1	16.00±0.3	2.1±0.1	0.3±0.05
2mΩ	5.5±0.2	10.5±0.2	1.5±0.1	1.5±0.1	4.00±0.1	8.00±0.1	2.00±0.1	1.75±0.1	7.50±0.1	16.00±0.3	1.5±0.1	0.3±0.05
3mΩ	5.5±0.2	10.5±0.2	1.5±0.1	1.5±0.1	4.00±0.1	8.00±0.1	2.00±0.1	1.75±0.1	7.50±0.1	16.00±0.3	1.5±0.1	0.3±0.05
4mΩ	5.65±0.2	10.41±0.2	1.5±0.1	1.5±0.1	4.00±0.1	8.00±0.1	2.00 ± 0.1	1.75±0.1	7.50 ± 0.1	16.00 ± 0.3	1.14 ± 0.1	0.4±0.05
5mΩ	5.65±0.2	10.41±0.2	1.5±0.1	1.5±0.1	4.00±0.1	8.00±0.1	2.00 ± 0.1	1.75±0.1	7.50±0.1	16.00±0.3	1.14±0.1	0.4±0.05

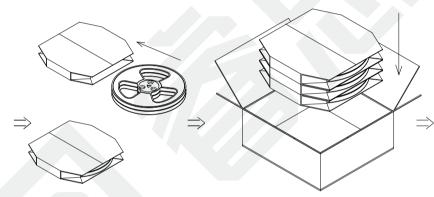
Reel Specifications

Unit:mm

Unit:mm

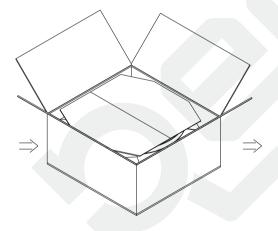


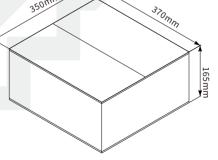
Α	ФВ	ΦC	ΦD	ΦE
1.5 Min.	13.0 +0.5/-0.2	20.2 Min.	330±2	100±2



Packaging

- (1) 2000 pcs. resistors are packed in a tape and wrapped in a reel;
- (2) Every 2 reels are packed by a cardboard sleeve case. The size of the cardboard is 335mm*340mm*37mm;
- (3) Place every 3 cases into a box (12000 pcs. / box);
- (4) Box size: 350mm*370mm*165mm.


1.2000 pcs. resistors are packed in a tape and wrapped in a reel.


2. Every 2 reels are packed by a cardboard sleeve case. The size of the cardboard is 335mm*340mm*37mm.

350mm

3. Place every 3 cases into a box (12000 pcs. / box).

4. For the last box which is less than 12000 pcs., bubble wrap or EPE should be placed to prevent products from shaking or vibration.

5. Box size: 350mm*370mm*165mm

Popular Part Numbers

Part Number	Size	Tolerance	Resistance	TCR	Power	Max. Operating Current
SEWF3920D1L00P9	3920	±0.5%	1.0mΩ	≤±25ppm/°C	8.0W	89A
SEWF3920F1L00P9	3920	±1.0%	1.0mΩ	≤±25ppm/°C	8.0W	89A
SEWF3920J1L00P9	3920	±5.0%	1.0mΩ	≤±25ppm/°C	8.0W	89A
SEWF3920D2L00P9	3920	±0.5%	2.0mΩ	≤±25ppm/°C	6.0W	55A
SEWF3920F2L00P9	3920	±1.0%	2.0mΩ	≤±25ppm/°C	6.0W	55A
SEWF3920J2L00P9	3920	±5.0%	2.0mΩ	≤±25ppm/°C	6.0W	55A
SEWF3920D3L00P9	3920	±0.5%	3.0mΩ	≤±25ppm/°C	5.0W	41A
SEWF3920F3L00P9	3920	±1.0%	3.0mΩ	≤±25ppm/°C	5.0W	41A
SEWF3920J3L00P9	3920	±5.0%	3.0mΩ	≤±25ppm/°C	5.0W	41A
SEWF3920D4L00P9	3920	±0.5%	4.0mΩ	≤±25ppm/°C	4.0W	32A
SEWF3920F4L00P9	3920	±1.0%	4.0mΩ	≤±25ppm/°C	4.0W	32A
SEWF3920J4L00P9	3920	±5.0%	4.0mΩ	≤±25ppm/°C	4.0W	32A
SEWF3920D5L00P9	3920	±0.5%	5.0mΩ	≤±25ppm/°C	3.0W	25A
SEWF3920F5L00P9	3920	±1.0%	5.0mΩ	≤±25ppm/°C	3.0W	25A
SEWF3920J5L00P9	3920	±5.0%	5.0mΩ	≤±25ppm/°C	3.0W	25A

Data Sheet No:E16017 Version:V2 Date:2024/04/07

PEWM5930

High-Precision Low-Inductance Alloy Current Sensing Resistor

Resistance	0.2mΩ~1.0mΩ
Tolerance	±0.5%
TCR	±100ppm/°C
Rated Current	94A~273A

Applications

Automotive Electronics Precision Power Supply

Formation & Sorting of Battery

Electric Tools

Medical Equipment

Better Solution for Sustainable High End Manufacturing

Low-Inductance Alloy Current Sensing Resistor "Trimming Free" Technology, High Precision, Reliability

Introduction

PEWM5930 series is based on a precision resistive alloy, welded by a specialized electron beam welding equipment. Both resistive alloy and welding equipment are independently designed and manufactured by C&B Electronics. Because of controlling the consistency of resistive alloys, precision processing ability and efficient welding, PEWM5930 achieves a maximum target tolerance of $\pm 0.5\%$ after stamping without trimming. TCR of PEWM5930 series within the temperature range of +20 °C to +170 °C is $\leq \pm 100$ ppm/°C. Inductance is < 3nH.

"Trimming Free" technology avoids the loss of rated current caused by trimming and also avoids current accumulation hotspots caused by trimmed notch, greatly improving the reliability of the product. Meanwhile, due to the improvement of welding quality, thermal EMF of the product is significantly reduced, improving its long-term stability.

PEWM5930 series, from raw materials, core equipment, to core processes, achieves independent and controllable production, stable quality, and timely delivery. If the standard specifications cannot meet your needs, please contact our sales for consultation. Resi is committed to providing the best precision resistor solutions to meet the needs of customers in instrumentation, medical equipment, automotive electronics, precision power supplies, formation & sorting of battery, testing and measurement equipment and other fields.

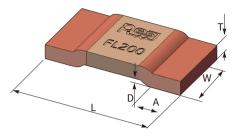
Electrical Parameters

Size	Resistance	Rated Power (+70°C)	Max. Operating Current	Operating Temperature	TCR ppm/°C(+20°C Ref)	Thermal Resistance*	Tolerance %
PEWM5930	0.2mΩ	15W	273A	-55°C~+170°C	±100(+20°C~+170°C)	2.6°C/W	$\pm 0.5 \\ \pm 1.0 \\ \pm 5.0$
PEWM5930	0.5mΩ	10W	142A	-55°C~+170°C	±100(+20°C~+170°C)	6.5°C/W	$\pm 0.5 \\ \pm 1.0 \\ \pm 5.0$
PEWM5930	0.8mΩ	ЭW	105A	-55°C~+170°C	±100(+20°C~+170°C)	9.3°C/W	$\pm 0.5 \\ \pm 1.0 \\ \pm 5.0$
PEWM5930	1.0mΩ	9W	94A	-55°C~+170°C	±100(+20°C~+170°C)	11.4°C/W	$\pm 0.5 \\ \pm 1.0 \\ \pm 5.0$

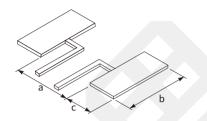
* Thermal Resistance: Refer to the internal thermal resistance between the center of the resistive alloy and the copper electrode.

As the heat dissipation efficiency is influenced by operating environment, copper bus bars, PCB design, etc., this parameter is only for reference.

Applications


Inductance of PEWM5930 current sensing resistors is less than 3nH, suitable for AC, DC low and high frequency sampling circuits.

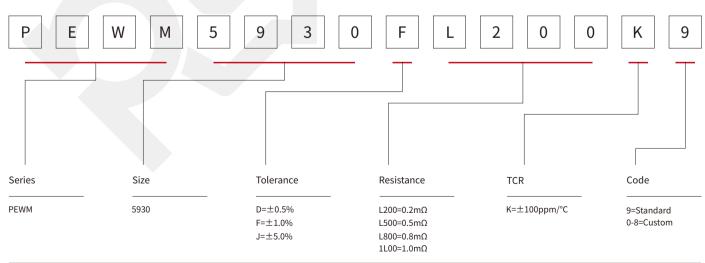
PEWM5930


High-Precision Low-Inductance Alloy Current Sensing Resistor

Dimensions

Resistor

Land Pattern



Not following the recommended land pattern design can seriously affect the temperature coefficient measurement results and current sensing accuracy!

Resistance	L	W	Α	т	D	а	b	c	Packaging	Quantity Per Reel	Net Weight
0.2mΩ	15.0±0.3	7.75±0.3	3.8±0.3	1.6±0.2	0.5±0.2	5.6±0.1	8.75±0.2	5.2±0.1	Tape&Reel	2000pcs	1.68±0.3
0.5mΩ	15.0±0.3	7.75±0.3	3.8±0.3	0.65±0.2	0.5±0.2	5.6±0.1	8.75±0.2	5.2±0.1	Tape&Reel	2000pcs	0.69±0.2
0.8mΩ	15.0±0.3	7.75±0.3	3.8±0.3	0.47±0.2	0.5±0.2	5.6±0.1	8.75±0.2	5.2±0.1	Tape&Reel	2000pcs	0.50±0.2
1.0mΩ	15.0±0.3	7.75±0.3	3.8±0.3	0.38±0.2	0.5±0.2	5.6±0.1	8.75±0.2	5.2±0.1	Tape&Reel	2000pcs	0.40±0.2

Part Number Information

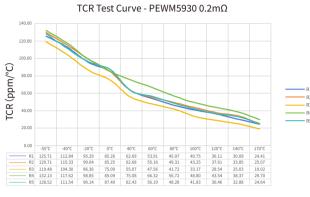
<code>Example:PEWM5930FL200K9(PEWM 5930 \pm 1.0% 0.2m Ω \pm 100ppm/°C Standard)</code>

For higher/lower resistance, tighter tolerance, higher power, lower TCR and larger size, please contact us.

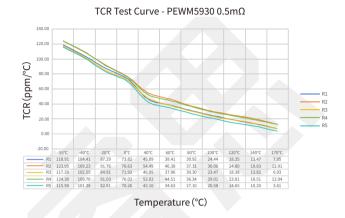
Unit:mm

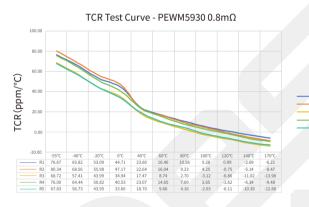
High-Precision Low-Inductance Alloy Current Sensing Resistor

Performance

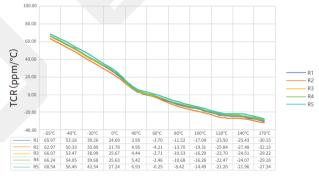

Test	Test Method	Standards	Typical	Max.
High Temperature Storage	1000h@+170°C, unpowered	AEC-Q200 TEST 3 MIL-STD-202 Method 108	$\triangle R \leq \pm 0.5\%$	∆R≤±1.0%
Thermal Shock	-55°C, 15min~ambient temperature<20s~+155°C, 15min, 1000 cycles	AEC-Q200 TEST 16 MIL-STD-202 Method 107	∆R≤±0.1%	∆R≤±0.5%
Bias Humidity	+85°C, 85%RH, powered no less than 10% rated power for 1000h	AEC-Q200 TEST 7 MIL-STD-202 Method 103	∆R≤±0.2%	△ R≤±0.5%
Load Life	2000h @ +70°C, rated power, 90min on, 30min off +70°C refers to terminal temperature	AEC-Q200 TEST 8 MIL-STD-202 Method 108	$\triangle R \leq \pm 0.5\%$	∆R≤±1.0%
Resistance to Solvent	Immerse in solvent for 3 min and wipe 10 times. Three cycles of three solvents. Dry at ambient temperature after cleaning	AEC-Q200 TEST 12 MIL-STD-202 Method 215	Clear marking. No damage	visible
Mechanical Shock	Half Sine Wave, peak acceleration 100g's, pulse duration 6ms, 3 times in each of six directions, on three different axes	AEC-Q200 TEST 13 MIL-STD-202 Method 213	∆R≤±0.05%	∆R≤±0.2%
Vibration	10-2KHz, 5g's, 20min/cycle, 12 cycles in each directions of X Y Z	AEC-Q200 TEST 14 MIL-STD-202 Method 204	△R≤±0.05%	∆R≤±0.2%
Resistance to Solder Heat	+260°C tin bath for 10s	AEC-Q200 TEST 15 MIL-STD-202 Method 210	∆R≤±0.2%	∆R≤±0.5%
Solderability	+245°C tin bath for 3s	AEC-Q200 TEST 18 IEC 60115-1 4.17	No visible damage 95% minimum cov	
TCR	+20°C and +170°C, +20°C Ref.	AEC-Q200 TEST 19 IEC 60115-1 4.8	Refer to tested cur max. value $\leq \pm 10$,
Substrate Bending	2mm. Duration: 60s.	AEC-Q200 TEST 21 AEC-Q200-005	∆ R≤±0.1%	∆R≤±0.5%
Short Time Overload	5x rated power, 5s	IEC 60115-1 4.13	∆R≤±0.1%	$\triangle R \leq \pm 0.5\%$
Low Temperature Storage	-55°C for 96h, unpowered	IEC 60068-2-1	$\triangle R \leq \pm 0.1\%$	∆R≤±0.5%
Moisture Resistance	Apply T=24 h/cycle, zero power, method 7a and 7b are not required	MIL-STD-202 Method 106	∆R≤±0.1%	∆R≤±0.5%

PEWM5930


High-Precision Low-Inductance Alloy Current Sensing Resistor

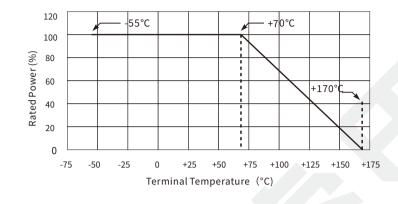


Temperature Coefficient of Resistance Test Curve

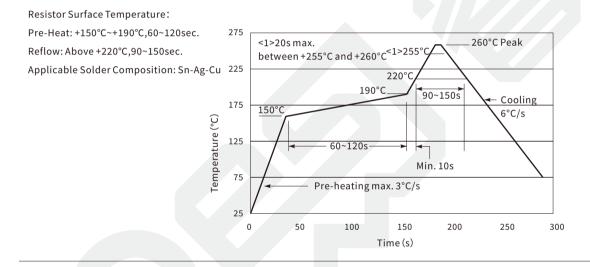

Temperature (°C)

Temperature (°C)

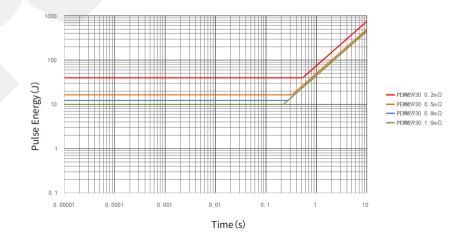
TCR Test Curve - PEWM5930 1.0mΩ



Temperature (°C)

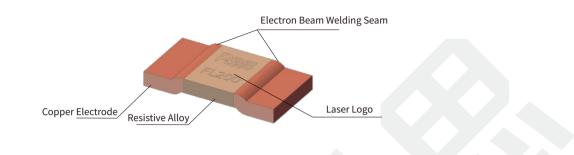


High-Precision Low-Inductance Alloy Current Sensing Resistor


Derating Curve

Reflow Soldering Profile

Maximum Pulse Energy Curve



PEWM5930

Construction

Marking

The first line (four digits) represents brand. The second line (five digits) represents tolerance and resistance.

Size	Illustration	Demonstration	
5930		RESI:Brand F:Tolerance L200:Resistance	

Storage Instructions

(1) Resistors should be stored at a temperature of 5 to 35 °C, with a humidity of <60% RH. The humidity should be kept as low as possible.

(2) Resistors should be protected from direct sunlight.

(3) Resistors should be stored in a clean and dry environment free of harmful gases (HCl, Sulfuric acid, H₂S, etc.)

(4) Do not move the resistor from the packaging unless use it.

(5) Under the above storage conditions, the resistor can be stored for at least 1 year.

Usage Suggestions

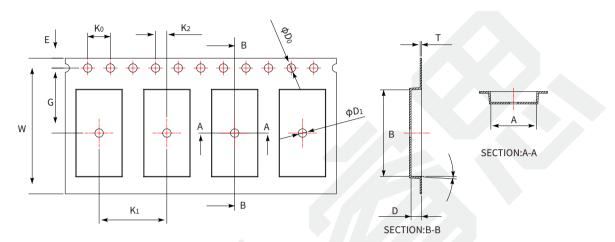
(1) Please protect the surface of the resistor during use. Prevent defects such as scratches, bumps, and oil stains on the surface.

(2) Do not use sharp tweezers to move the resistor. Scratches on the surface can cause resistance drift and resistor failure.

(3) When installing and using resistors, avoid the impact of mechanical stress on the resistor.

(4) The long-term operating power of resistors should be less than the rated power to avoid resistance drift caused by long-term overload.

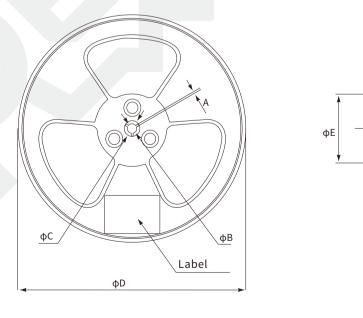
(5) Please refer to the derating curve when operating under high temperature conditions or poor heat dissipation environment.


(6) If the operating conditions exceed the pulse specified in the pulse curve, a systematic evaluation is required.

(7) If the resistor is not used after being moved from the packaging, it should be stored under vacuum to avoid risks such as poor solderability caused by oxidation of the resistor.

Packaging

Tape Specifications



Resistance	Α	В	φDο	φDı	Ko	K 1	K 2	E	G	W	D	т
0.2mΩ	8.03±0.2	15.6±0.2	1.5±0.1	1.5±0.1	4.0±0.1	12.0±0.1	2.0±0.1	1.75±0.1	11.5±0.1	24.0±0.3	2.35±0.1	0.3±0.05
0.5mΩ	8.05±0.2	15.3±0.2	1.5±0.1	1.5±0.1	4.0±0.1	12.0±0.1	2.0±0.1	1.75±0.1	11.5±0.1	24.0±0.3	1.3±0.1	0.3±0.05
0.8mΩ	8.05±0.2	15.3±0.2	1.5±0.1	1.5±0.1	4.0±0.1	12.0±0.1	2.0±0.1	1.75±0.1	11.5±0.1	24.0±0.3	1.3±0.1	0.3±0.05
1.0mΩ	8.05±0.2	15.3±0.2	1.5±0.1	1.5±0.1	4.0±0.1	12.0±0.1	2.0±0.1	1.75±0.1	11.5±0.1	24.0±0.3	1.3±0.1	0.3±0.05

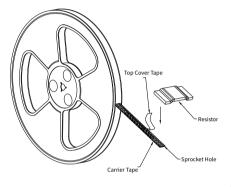
Reel Specifications

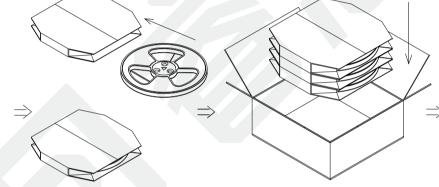
Unit:mm

Unit:mm

Α	фВ	φC	φD	φE
1.5 Min.	13.0 +0.5/-0.2	20.2 Min.	330±2	100±2

C&B Electronics Shenzhen CO., LTD. | www.resistor.today | resi@cbeureka.com | Tel:0755-82899519


PEWM5930 High-Precision Low-Inductance Alloy Current Sensing Resistor

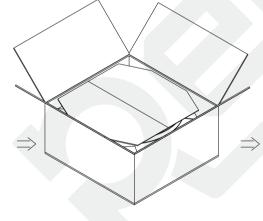


Packaging

- (1) 2000 pcs. resistors are packed in a tape and wrapped in a reel;
- (2) Every reel is packed by a cardboard sleeve case. The size of the cardboard is 335mm*340mm*37mm;
- (3) Place every 3 cases into a box (6000 pcs. / box);

(4) Box size: 350mm*370mm*165mm.

370mm


165 mm

1.2000 pcs. resistors are packed in a tape and wrapped in a reel.

2. Every reel is packed by a cardboard sleeve case. The size of the cardboard is 335mm*340mm*37mm.

350mr

3. Place every 3 cases into a box (6000 pcs. / box).

4. Bubble wrap or EPE should be placed to prevent products from shaking or vibration.

5. Box size: 350mm*370mm*165mm

High-Precision Low-Inductance Alloy Current Sensing Resistor

Popular Part Numbers

Part Number	Size	Tolerance	Resistance	TCR	Power	Max. Operating Current
PEWM5930DL200K9	5930	±0.5%	0.2mΩ	±100ppm/°C	15W	273A
PEWM5930FL200K9	5930	±1.0%	0.2mΩ	±100ppm/°C	15W	273A
PEWM5930JL200K9	5930	±5.0%	0.2mΩ	±100ppm/°C	15W	273A
PEWM5930DL500K9	5930	±0.5%	0.5mΩ	±100ppm/°C	10W	142A
PEWM5930FL500K9	5930	±1.0%	0.5mΩ	±100ppm/°C	10W	142A
PEWM5930JL500K9	5930	±5.0%	0.5mΩ	±100ppm/°C	10W	142A
PEWM5930DL800K9	5930	±0.5%	0.8mΩ	±100ppm/°C	9W	105A
PEWM5930FL800K9	5930	±1.0%	0.8mΩ	±100ppm/°C	9W	105A
PEWM5930JL800K9	5930	±5.0%	0.8mΩ	±100ppm/°C	9W	105A
PEWM5930D1L00K9	5930	±0.5%	1.0mΩ	±100ppm/°C	9W	94A
PEWM5930F1L00K9	5930	±1.0%	1.0mΩ	±100ppm/°C	9W	94A
PEWM5930J1L00K9	5930	±5.0%	1.0mΩ	±100ppm/°C	9W	94A

DataSheet No.:E19017 Version:V2 Date:2024/03/13

SEWF5930

High-Precision Low-TCR Alloy Current Sensing Resistor

Resistance	1mΩ~3mΩ
Tolerance	±0.5%
TCR	±25ppm/°C
Rated Current	45A~100A

Applications

Automotive Electronics Precision Power Supply Instrumentation Sorting & Formation of Battery Medical Equipment

Better Solution for Sustainable High End Manufacturing

High-Precision Low-TCR Alloy Current Sensing Resistor "Trimming Free" Technology, High Precision, Low TCR, Reliability

Introduction

SEWF5930 series is based on a precision resistive alloy, welded by a specialized electron beam welding equipment. Both resistive alloy and welding equipment are independently designed and manufactured by C&B Electronics. Because of controlling the consistency of resistive alloys, precision processing ability and efficient welding, SEWF5930 achieves a maximum target tolerance of \pm 0.5% after stamping without trimming. TCR of SEWF5930 series within the temperature range of -55 °C to +170 °C is $\leq \pm$ 25ppm/°C.

"Trimming Free" technology avoids the loss of rated current caused by trimming and also avoids current accumulation hotspots caused by trimmed notch, greatly improving the reliability of the product. Meanwhile, due to the improvement of welding quality, thermal EMF of the product is significantly reduced, improving its long-term stability.

SEWF5930 series, from raw materials, core equipment, to core processes, achieves independent and controllable production, stable quality, and timely delivery. If the standard specifications cannot meet your needs, please contact our sales for consultation. Resi is committed to providing the best precision resistor solutions to meet the needs of customers in instrumentation, medical equipment, automotive electronics, precision power supplies, sorting & formation of battery, testing and measurement equipment and other fields.

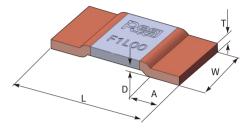
Electrical Parameters

Size	Resistance	Rated Power (+70°C)	Max. Operating Voltage	Operating Temperature	TCR ppm/°C (+20°C Ref)	Thermal Resistance	Tolerance %
SEWF5930	1.0mΩ	10W	100A	-55°C~+170°C	±25(-55°C~+170°C)	6.4°C/W	$\pm 0.5 \\ \pm 1.0 \\ \pm 5.0$
SEWF5930	2.0mΩ	8W	63A	-55°C~+170°C	±25(-55°C~+170°C)	12.6°C/W	$\pm 0.5 \\ \pm 1.0 \\ \pm 5.0$
SEWF5930	3.0mΩ	6W	45A	-55°C~+170°C	±25(-55°C~+170°C)	19.1°C/W	$\pm 0.5 \\ \pm 1.0 \\ \pm 5.0$

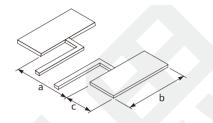
* Thermal Resistance: Refers to the internal thermal resistance between the center of the resistive alloy and the copper electrode.

As the heat dissipation efficiency is influenced by operating environment, copper bus bars, PCB design, etc., this parameter is only for reference.

Application


SEWF5930 series is only applicable to DC sampling circuits. If you have AC sampling demands, please contact us.

SEWF5930


High-Precision Low-TCR Alloy Current Sensing Resistor

Dimensions

Resistor

Land Pattern

Not following the recommended land pattern design can seriously affect the temperature coefficient measurement results and current sensing accuracy!

Resistance	L	W	Α	т	D	а	b	c	Packaging	Quantity Per Reel	Net Weight
1.0mΩ	15.0±0.3	7.75±0.3	3.8±0.3	1.05±0.2	0.5±0.2	5.6±0.1	8.75±0.2	5.2±0.2	Tape&Reel	2000pcs	1.01±0.1
2.0mΩ	15.0±0.3	7.75±0.3	3.8±0.3	0.53±0.2	0.5±0.2	5.6±0.1	8.75±0.2	5.2±0.2	Tape&Reel	2000pcs	0.51±0.1
3.0mΩ	15.0±0.3	7.75±0.3	3.8±0.3	0.35±0.2	0.5±0.2	5.6±0.1	8.75±0.2	5.2±0.2	Tape&Reel	2000pcs	0.34±0.1

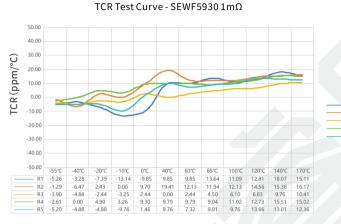
Part Number Information

Example: SEWF5930F1L00P9 (SEWF 5930 $\pm 1.0\%$ 1.0m0 $\pm 25 ppm/^{\circ}C\,$ Standard)

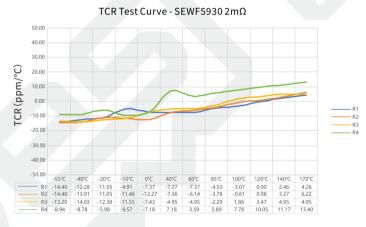
For higher/lower resistance, tighter tolerance, higher power, lower TCR and larger size, please contact us.

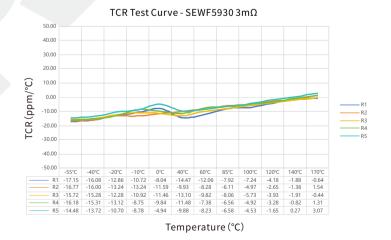
Unit:mm

容思

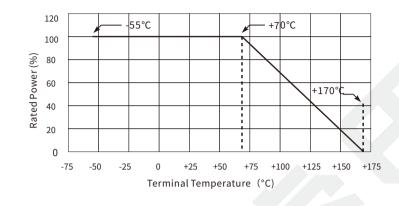


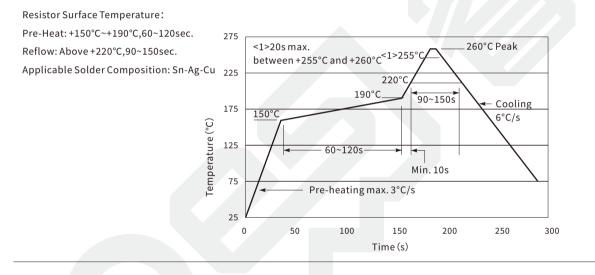
Performance

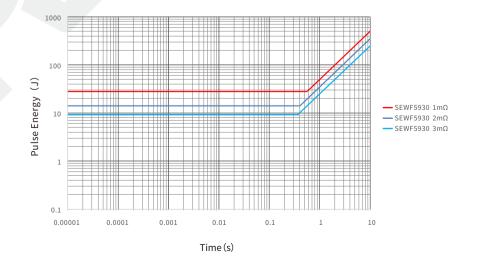

Test	Test Method	Standards	Typical	Max.
High Temperature Storage	1000h@+170°C, unpowered	AEC-Q200 TEST 3 MIL-STD-202 Method 108	$\triangle R \leq \pm 0.5\%$	∆R≤±1.0%
Thermal Shock	-55°C, 15min~ambient temperature<20s~+155°C, 15min, 1000 cycles	AEC-Q200 TEST 16 MIL-STD-202 Method 107	∆R≤±0.1%	∆R≤±0.5%
Bias Humidity	+85°C, 85%RH, powered no less than 10% rated power for 1000h	AEC-Q200 TEST 7 MIL-STD-202 Method 103	∆R≤±0.2%	△R≤±0.5%
Load Life	2000h @ +70°C, rated power, 90min on, 30min off +70°C refers to terminal temperature	AEC-Q200 TEST 8 MIL-STD-202 Method 108	∆R≤±0.5%	∆R≤±1.0%
Resistance to Solvent	Immerse in solvent for 3 min and wipe 10 times. Three cycles of three solvents. Dry at ambient temperature after cleaning	AEC-Q200 TEST 12 MIL-STD-202 Method 215	Clear marking. No damage	visible
Mechanical Shock	Half Sine Wave, peak acceleration 100g's, pulse duration 6ms, 3 times in each of six directions, on three different axes	AEC-Q200 TEST 13 MIL-STD-202 Method 213	∆ R≤±0.01%	∆R≤±0.2%
Vibration	10-2KHz, 5g's, 20min/cycle, 12 cycles in each directions of X Y Z	AEC-Q200 TEST 14 MIL-STD-202 Method 204	∆R≤±0.01%	∆R≤±0.2%
Resistance to Solder Heat	+260°C tin bath for 10s	AEC-Q200 TEST 15 MIL-STD-202 Method 210	∆R≤±0.2%	∆R≤±0.5%
Solderability	+245°C tin bath for 3s	AEC-Q200 TEST 18 IEC 60115-1 4.17	No visible damag 95% minimum co	
TCR	-55°C and +170°C, +20°C Ref.	AEC-Q200 TEST 19 IEC 60115-1 4.8	Refer to tested cu max. value ≤ 25p	,
Substrate Bending	2mm. Duration: 60s.	AEC-Q200 TEST 21 AEC-Q200-005	∆R≤±0.1%	∆R≤±0.5%
Short Time Overload	5x rated power, 5s	IEC 60115-1 4.13	∆R≤±0.1%	R≤±0.5%
Low Temperature Storage	-55°C for 96h, unpowered	IEC 60068-2-1	∆R≤±0.1%	R≤±0.5%
Moisture Resistance	Apply T=24 h/cycle, zero power, method 7a and 7b are not required	MIL-STD-202 Method 106	∆R≤±0.1%	∆R≤±0.5%


Temperature Coefficient of Resistance Test Curve

Temperature (°C)

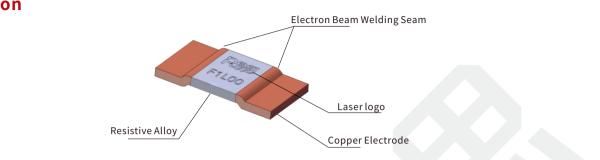

Temperature (°C)


R3


Derating Curve

Reflow Soldering Profile

Maximum Pulse Energy Curve



SEWF5930

High-Precision Low-TCR Alloy Current Sensing Resistor

Construction

Marking

The first line (four digits) represents brand. The second line (five digits) represents tolerance and resistance.

Size	Illustration	Demonstration
5930		RESI:Brand F:Tolerance 1L00:Resistance

Storage Instructions

(1) Resistors should be stored at a temperature of 5 to 35 °C, with a humidity of <60% RH. The humidity should be kept as low as possible.

(2) Resistors should be protected from direct sunlight.

(3) Resistors should be stored in a clean and dry environment free of harmful gases (HCl, Sulfuric acid, H₂S, etc.)

(4) Do not move the resistor from the packaging unless use it.

(5) Under the above storage conditions, the resistor can be stored for at least 1 year.

Usage Suggestions

(1) Please protect the surface of the resistor during use. Prevent defects such as scratches, bumps, and oil stains on the surface.

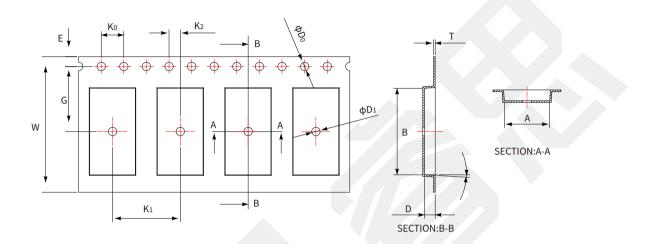
(2) Do not use sharp tweezers to move the resistor. Scratches on the surface can cause resistance drift and resistor failure.

(3) When installing and using resistors, avoid the impact of mechanical stress on the resistor.

(4) The long-term operating power of resistors should be ≤ rated power to avoid resistance drift caused by long-term overload.

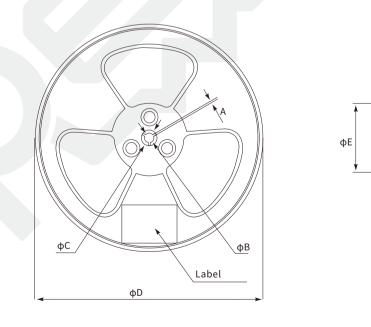
(5) Please refer to the derating curve when operating under high temperature conditions or poor heat dissipation environment.

(6) If the operating conditions exceed the pulse specified in the pulse curve, a systematic evaluation is required.


(7) If the resistor is not used after being moved from the packaging, it should be stored under vacuum to avoid risks such as poor welding caused by oxidation of the resistor.

Packaging

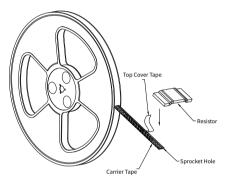
Tape Specifications

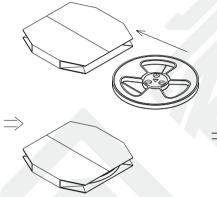

Unit:mm

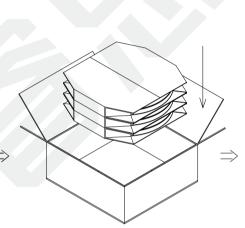
Resistance	Α	В	φDο	φ D 1	Ko	K 1	K2	E	G	W	D	т
1.0mΩ	8.05±0.2	15.3±0.2	1.5±0.1	1.5±0.1	4.0±0.1	12.0±0.1	2.0±0.1	1.75±0.1	11.5±0.05	24.0±0.3	1.9±0.1	0.3±0.05
2.0mΩ	8.05±0.2	15.3±0.2	1.5±0.1	1.5 ± 0.1	4.0±0.1	12.0±0.1	2.0±0.1	1.75±0.1	11.5±0.05	24.0±0.3	1.3±0.1	0.3±0.05
3.0mΩ	8.05±0.2	15.3±0.2	1.5±0.1	1.5±0.1	4.0±0.1	12.0±0.1	2.0±0.1	1.75±0.1	11.5±0.05	24.0±0.3	1.3±0.1	0.3±0.05

Reel Specifications

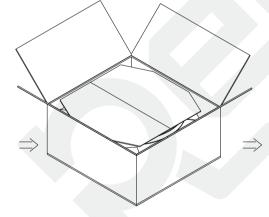
Unit:mm




Α	фВ	φC	φD	φE
1.5 Min.	13.0 +0.5/-0.2	20.2 Min.	330±2	100±2


Packaging

- (1) 2000 pcs. resistors are packed in a tape and wrapped in a reel;
- (2) Every reel are packed by a cardboard sleeve case. The size of the cardboard is 335mm*340mm*37mm;
- (3) Place every 3 cases into a box(6000 pcs./box);
- (4) Box size: 350mm*370mm*165mm.


3501

1.2000 pcs. resistors are packed in a tape and wrapped in a reel.

2. .Every reels are packed by a cardboard sleeve case. The size of the cardboard is 335mm*340mm*37mm;

3..Place every 3 cases into a box (6000 pcs./box).

4. Bubble wrap or EPE should be placed to prevent products from shaking or vibration.

5. Box size: 350mm*370mm*165mm

370mm

165 mr

Popular Part Numbers

Part Number	Size	Tolerance	Resistance	TCR	Power	Max. Operating Current	
SEWF5930D1L00P9	5930	±0.5%	1.0mΩ	≤±25ppm/°C	10W	100A	
SEWF5930D2L00P9	5930	±0.5%	2.0mΩ	≤±25ppm/°C	8W	63A	
SEWF5930D3L00P9	5930	±0.5%	3.0mΩ	≤±25ppm/°C	6W	45A	
SEWF5930F1L00P9	5930	±1.0%	1.0mΩ	≤±25ppm/°C	10W	100A	
SEWF5930F2L00P9	5930	±1.0%	2.0mΩ	≤±25ppm/°C	8W	63A	
SEWF5930F3L00P9	5930	±1.0%	3.0mΩ	≤±25ppm/°C	6W	45A	
SEWF5930J1L00P9	5930	±5.0%	1.0mΩ	≤±25ppm/°C	10W	100A	
SEWF5930J2L00P9	5930	±5.0%	2.0mΩ	≤±25ppm/°C	8W	63A	
SEWF5930J3L00P9	5930	±5.0%	3.0mΩ	≤±25ppm/°C	6W	45A	

DataSheet No.:E19018 Version:V1 Date:2024/03/13

SEWF3951

High-Precision Low-TCR Alloy Current Sensing Resistor

Resistance	0.25~0.8mΩ
Tolerance	±0.5%
TCR	±25ppm/°C
Rated Current	110A~240A

Applications

Automotive Electronics Precision Power Supply Instrumentation Formation & Sorting of Battery Medical Equipment

Better Solution for Sustainable High End Manufacturing

High-Precision Low-TCR Alloy Current Sensing Resistor "Trimming Free" Technology, High Precision, Low TCR, Reliability

Introduction

SEWF3951 series is based on a precision resistive alloy, welded by a specialized electron beam welding equipment. Both resistive alloy and welding equipment are independently designed and manufactured by C&B Electronics. Because of controlling the consistency of resistive alloys, precision processing ability and efficient welding, SEWF3951 achieves a maximum target tolerance of $\pm 0.5\%$ after stamping without trimming. TCR of SEWF3951 series within the temperature range of +20 °C to +120 °C is $\leq \pm 25$ ppm/°C.

"Trimming Free" technology avoids the loss of rated current caused by trimming and also avoids current accumulation hotspots caused by trimmed notch, greatly improving the reliability of the product. Meanwhile, due to the improvement of welding quality, thermal EMF of the product is significantly reduced, improving its long-term stability.

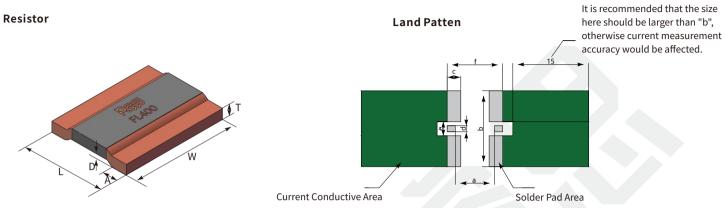
SEWF3951 series, from raw materials, core equipment, to core processes, achieves independent and controllable production, stable quality, and timely delivery. If the standard specifications cannot meet your needs, please contact our sales for consultation. Resi is committed to providing the best precision resistor solutions to meet the needs of customers in instrumentation, medical equipment, automotive electronics, precision power supplies, formation & sorting of battery, testing and measurement equipment and other fields.

Size	Resistance	Rated Power (+70°C)	Max. Operating Current	Operating Temperature	TCR ppm/°C (+20°C Ref)	Thermal Resistance*	Tolerance %
SEWF3951	0.25mΩ	15W	240A	-55°C~+170°C	±25(+20°C~+120°C)	2.0°C/W	$\pm 0.5 \\ \pm 1.0 \\ \pm 5.0$
SEWF3951	0.3mΩ	15W	220A	-55°C~+170°C	±25(+20°C~+120°C)	2.3°C/W	$\pm 0.5 \\ \pm 1.0 \\ \pm 5.0$
SEWF3951	0.4mΩ	15W	190A	-55°C~+170°C	±25(+20°C~+120°C)	3.2°C/W	$\pm 0.5 \\ \pm 1.0 \\ \pm 5.0$
SEWF3951	0.8mΩ	10W	110A	-55°C~+170°C	±25(+20°C~+120°C)	6.1°C/W	$\pm 0.5 \\ \pm 1.0 \\ \pm 5.0$

Electrical Parameters

* Thermal Resistance: Refers to the internal thermal resistance between the center of the resistive alloy and the copper electrode.

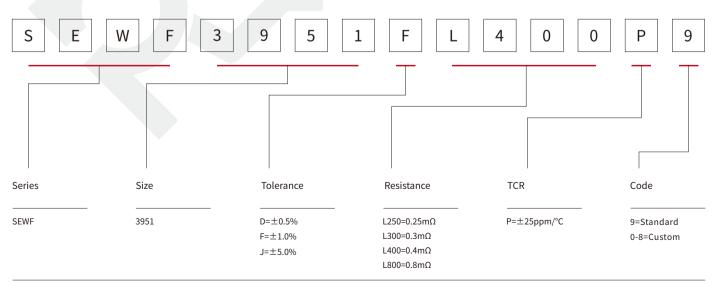
As the heat dissipation efficiency is influenced by operating environment, copper bus bars, PCB design, etc., this parameter is only for reference.


Applications

SEWF3951 series is only applicable to DC low-frequency sampling circuit. If needs of AC or high-frequency applications are present, please contact us.

Unit:mm

Dimensions



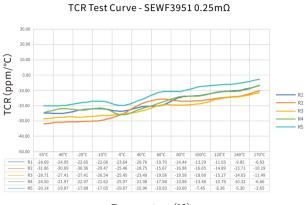
Not following the recommended solder pad design can seriously affect the temperature coefficient measurement results and current sensing accuracy!

Resistance	L	W	А	т	D	а	b	c	d	е	f	Quantity Per reel
0.25mΩ	10.0±0.3	13.0±0.5	2.0±0.3	2.0±0.2	0.5±0.2	8.6±0.1	15±0.2	2.7±0.2	1.2±0.2	2.8±0.2	11±0.2	1200pcs
0.3mΩ	10.0±0.3	13.0±0.5	2.0±0.3	1.7±0.2	0.5±0.2	8.6±0.1	15±0.2	2.7±0.2	1.2±0.2	2.8±0.2	11±0.2	1200pcs
0.4mΩ	10.0±0.3	13.0±0.5	2.0±0.3	1.3±0.2	0.5±0.2	8.6±0.1	15±0.2	2.7±0.2	1.2±0.2	2.8±0.2	11±0.2	1200pcs
0.8mΩ	10.0±0.3	13.0±0.5	2.0±0.3	0.65±0.2	0.5±0.2	8.6±0.1	15±0.2	2.7±0.2	1.2±0.2	2.8±0.2	11±0.2	1200pcs

Part Number Information

<code>Example:SEWF3951FL400P9</code> (<code>SEWF 3951 $\pm 1.0\%$ 0.4m Ω $\pm 25 ppm/^{\circ}C$ <code>Standard</code>)</code>

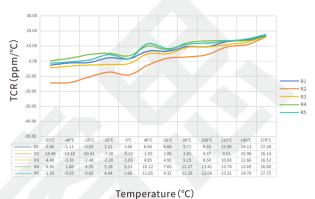
For higher/lower resistance, tighter tolerance, higher power, lower TCR and larger size, please contact us.



Performance

Test	Test Method	Standards	Typical	Max.	
High Temperature Storage	1000h@+170°C, unpowered	AEC-Q200 TEST 3 MIL-STD-202 Method 108	△ R≤±0.5%	∆R≤±1.0%	
Thermal Shock	-55°C, 15min~ambient temperature<20s~+155°C, 15min, 1000 cycles	AEC-Q200 TEST 16 MIL-STD-202 Method 107	△ R≤±0.1%	∆R≤±0.5%	
Bias Humidity	+85°C, 85%RH, powered no less than 10% rated power for 1000h	AEC-Q200 TEST 7 MIL-STD-202 Method 103	△ R≤±0.2%	△R≤±0.5%	
Load Life	2000h @ +70°C, rated power, 90min on, 30min off +70°C refers to terminal temperature	AEC-Q200 TEST 8 MIL-STD-202 Method 108	∆R≤±0.5%	∆R≤±1.0%	
Resistance to Solvent	Immerse in solvent for 3 min and wipe 10 times. Three cycles of three solvents. Dry at ambient temperature after cleaning	AEC-Q200 TEST 12 MIL-STD-202 Method 215	Clear marking. I damage	lo visible	
Mechanical Shock	Half Sine Wave, peak acceleration 100g's, pulse duration 6ms, 3 times in each of six directions, on three different axes	AEC-Q200 TEST 13 MIL-STD-202 Method 213	∆R≤±0.1%	∆R≤±0.5%	
Vibration	10-2KHz, 5g's, 20min/cycle, 12 cycles in each directions of X Y Z	AEC-Q200 TEST 14 MIL-STD-202 Method 204	∆R≤±0.1%	∆R≤±0.5%	
Resistance to Solder Heat	+260°C tin bath for 10s	AEC-Q200 TEST 15 MIL-STD-202 Method 210	∆R≤±0.2%	∆R≤±0.5%	
Solderability	+245°C tin bath for 3s	AEC-Q200 TEST 18 IEC 60115-1 4.17	No visible damage. 95% minimum coverage		
TCR	+20°C and +120°C, +20°C Ref.	AEC-Q200 TEST 19 IEC 60115-1 4.8	Refer to tested o max. value ≤ 25	,	
Substrate Bending	2mm. Duration: 60s.	AEC-Q200 TEST 21 AEC-Q200-005	∆R≤±0.1%	∆R≤±0.5%	
Short Time Overload	5x rated power, 5s	IEC 60115-1 4.13	∆R≤±0.1%	∆R≤±0.5%	
Low Temperature Storage	-55°C for 96h, unpowered	IEC 60068-2-1	∆R≤±0.1%	$\triangle R \leq \pm 0.5\%$	
Moisture Resistance	Apply T=24 h/cycle, zero power, method 7a and 7b are not required	MIL-STD-202 Method 106	∆R≤±0.1%	∆R≤±0.5%	

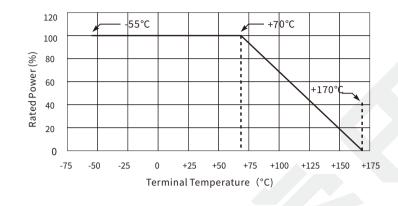
Temperature Coefficient of Resistance Test Curve


Temperature (°C)

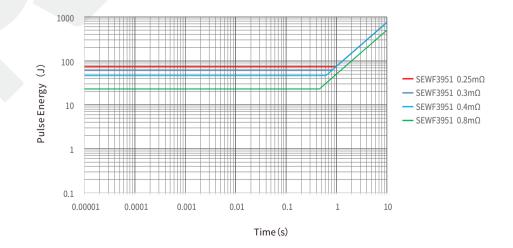
TCR Test Curve - SEWF3951 0.4mΩ

Temperature (°C)

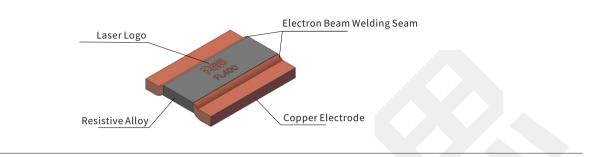
TCR Test Curve - SEWF3951 0.3mΩ


TCR Test Curve - SEWF3951 0.8mΩ

Temperature (°C)


Derating Curve

Reflow Soldering Profile


Resistor Surface Temperature: Pre-Heat: +150°C~+190°C,60~120sec. 275 260°C Peak <1>20s max. Reflow: Above +220°C,90~150sec. between +255°C and +260°C^{<1>255°} Applicable Solder Composition: Sn-Ag-Cu 225 220° 190°C 90~150s Cooling 175 150°C 6°C/s Temperature (°C) 125 60~120s Min. 10s 75 Pre-heating max. 3°C/s 25 0 50 100 150 200 250 300 Time (s)

Maximum Pulse Energy Curve

Construction

Marking

The first line (four digits) represents brand. The second line (five digits) represents tolerance and resistance.

3951 RESI:Brand F:Tolerance L400:Resistance	Size	Illustration	Demonstration
	3951	- 23	F:Tolerance

Storage Instructions

(1) Resistors should be stored at a temperature of 5 to 35 °C, with a humidity of <60% RH. The humidity should be kept as low as possible.

(2) Resistors should be protected from direct sunlight.

(3) Resistors should be stored in a clean and dry environment free of harmful gases (HCl, Sulfuric acid, H₂S, etc.)

(4) Do not move the resistor from the packaging unless use it.

(5) Under the above storage conditions, the resistor can be stored for at least 1 year.

Usage Suggestions

(1) Please protect the surface of the resistor during use. Prevent defects such as scratches, bumps, and oil stains on the surface.

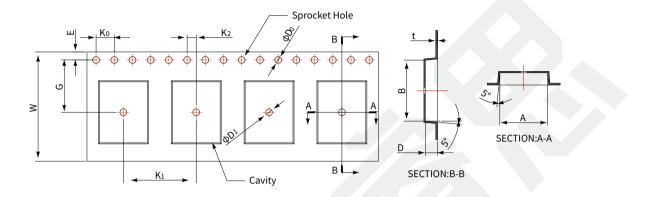
(2) Do not use sharp tweezers to move the resistor. Scratches on the surface can cause resistance drift and resistor failure.

(3) When installing and using resistors, avoid the impact of mechanical stress on the resistor.

(4) The long-term operating power of resistors should be ≤ rated power to avoid resistance drift caused by long-term overload.

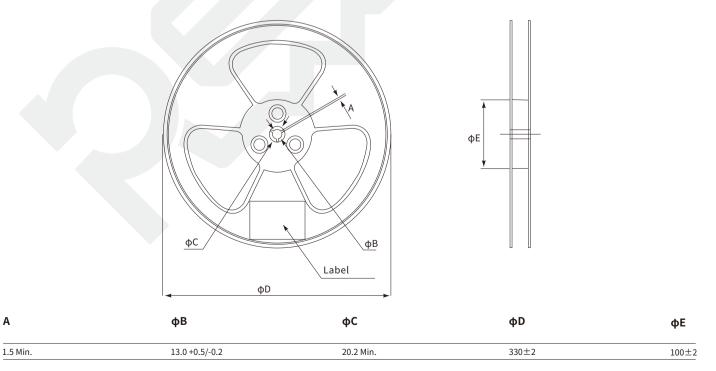
(5) Please refer to the derating curve when operating under high temperature conditions or poor heat dissipation environment.

(6) If the operating conditions exceed the pulse specified in the pulse curve, a systematic evaluation is required.


(7) If the resistor is not used after being moved from the packaging, it should be stored under vacuum to avoid risks such as poor welding caused by oxidation of the resistor.

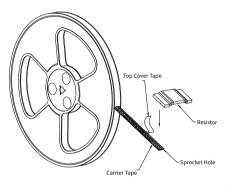
Packaging

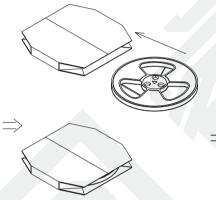
Tape Specifications

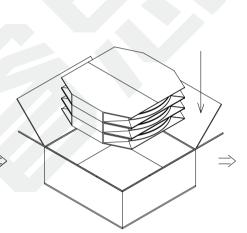

Unit:mm

Resistance	e A	В	φDo	φDı	Ko	K1	K 2	E	G	W	D	t
0.25mΩ	10.5±0.2	13.4±0.2	1.5±0.1	1.5±0.1	4±0.1	16±0.1	2±0.1	1.75±0.1	11.5±0.1	24±0.3	2.7±0.1	0.4±0.05
0.3mΩ	10.5±0.2	13.4±0.2	1.5±0.1	1.5±0.1	4±0.1	16±0.1	2±0.1	1.75±0.1	11.5±0.1	24±0.3	2.7±0.1	0.4±0.05
0.4mΩ	10.5±0.2	13.4±0.2	1.5±0.1	1.5±0.1	4±0.1	16±0.1	2±0.1	1.75±0.1	11.5±0.1	24±0.3	2.7±0.1	0.4±0.05
0.8mΩ	10.5±0.2	13.4±0.2	1.5±0.1	1.5±0.1	4±0.1	16±0.1	2±0.1	1.75±0.1	11.5±0.1	24±0.3	2.7±0.1	0.4±0.05

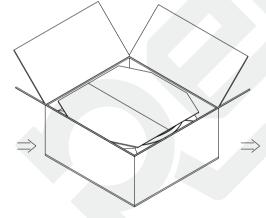
Reel Specifications


Unit:mm




Packaging

- (1) 1200 pcs. resistors are packed in a tape and wrapped in a reel;
- (2) Every reel are packed by a cardboard sleeve case. The size of the cardboard is 335mm*340mm*37mm;
- (3) Place every 3 cases into a box(3600 pcs./box);
- (4) Box size: 350mm*370mm*165mm.


3501

1. 1200 pcs. resistors are packed in a tape and wrapped in a reel.

2. .Every reels are packed by a cardboard sleeve case. The size of the cardboard is 335mm*340mm*37mm;

3. Place every 3 cases into a box (3600 pcs. / box).

4. Bubble wrap or EPE should be placed to prevent products from shaking or vibration.

5. Box size: 350mm*370mm*165mm

370mm

165 mr

Popular Part Numbers

Part Number	Size	Tolerance	Resistance	TCR	Power	Max. Operating Current
SEWF3951DL250P9	3951	±0.5%	0.25mΩ	±25ppm/°C	15W	240A
SEWF3951FL250P9	3951	±1.0%	0.25mΩ	±25ppm/°C	15W	240A
SEWF3951JL250P9	3951	±5.0%	0.25mΩ	±25ppm/°C	15W	240A
SEWF3951DL300P9	3951	±0.5%	0.3mΩ	±25ppm/°C	15W	220A
SEWF3951FL300P9	3951	±1.0%	0.3mΩ	±25ppm/°C	15W	220A
SEWF3951JL300P9	3951	±5.0%	0.3mΩ	±25ppm/°C	15W	220A
SEWF3951DL400P9	3951	±0.5%	0.4mΩ	±25ppm/°C	15W	190A
SEWF3951FL400P9	3951	±1.0%	0.4mΩ	±25ppm/°C	15W	190A
SEWF3951JL400P9	3951	±5.0%	0.4mΩ	±25ppm/°C	15W	190A
SEWF3951DL800P9	3951	±0.5%	0.8mΩ	±25ppm/°C	10W	110A
SEWF3951FL800P9	3951	±1.0%	0.8mΩ	±25ppm/°C	10W	110A
SEWF3951JL800P9	3951	±5.0%	0.8mΩ	±25ppm/°C	10W	110A

Data Sheet No.:E05016 Version:V1 Date:2024/03/09

EOAR

High Precision Alloy Current Sensing Resistor

Resistance	25mΩ
Tolerance	±0.5%
TCR	±40ppm/°C
Rated Current	14A

Applications

Automotive Electronics Precision Power Supply Instrumentation Battery Sorting & Formation Medical Equipment

Better Solution for Sustainable High End Manufacturing

High Precision, High Reliability & High Stability

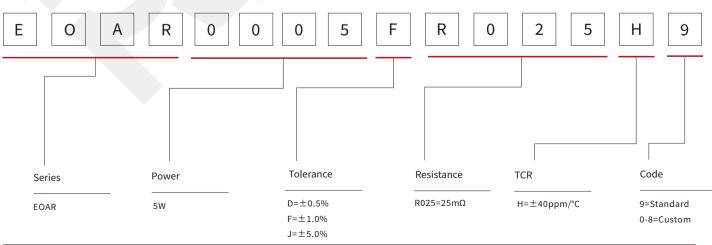
Introduction

EOAR series is based on a precision resistive alloy, welded by a specialized electron beam welding equipment. Both resistive alloy and welding equipment are independently designed and manufactured by C&B Electronics. Because of controlling the consistency of resistive alloys, precision processing ability and efficient welding, EOAR achieves a maximum target tolerance of \pm 0.5% after stamping without trimming. TCR of EOAR series within the temperature range of +20 °C to +170 °C is $\leq \pm$ 40ppm/°C.

"Trimming Free" technology avoids the loss of rated current caused by trimming and also avoids current accumulation hotspots caused by trimmed notch, greatly improving the reliability of the product. Meanwhile, due to the improvement of welding quality, thermal EMF of the product is significantly reduced, improving its long-term stability.

EOAR series, from raw materials, core equipment, to core processes, achieves independent and controllable production, stable quality, and timely delivery. If the standard specifications cannot meet your needs, please contact our sales for consultation.

Electrical Parameters

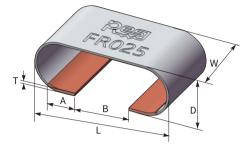

Series	Resistance	Rated Power (+70°C)	Max. Operating Current	Operating Temperature	TCR ppm/°C (+20°C Ref)	Tolerance %
EOAR	25mΩ	5W	14A	-55°C~+170°C	±40(+20°C~+170°C)	$\pm 0.5 \\ \pm 1.0 \\ \pm 5.0$

Applications

EOAR series is only applicable to DC low-frequency sampling circuit. If needs of AC or high-frequency applications are present, please contact us.

Part Number Information

Example: EOAR0005FR025H9 (EOAR 5W \pm 1.0% 25m Ω \pm 40ppm/°C Standard)


For higher/lower resistance, tighter tolerance, higher power, lower TCR and larger size, please contact us.

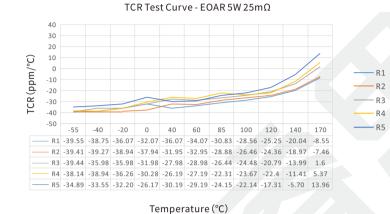
Unit:mm

Dimensions

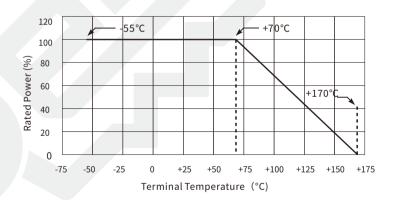
Resistor

Land Patten

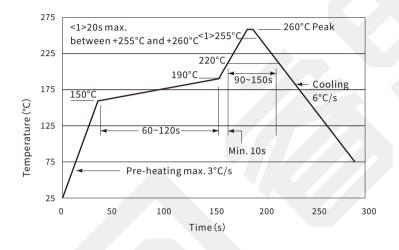
Not following the recommended solder pad design can seriously affect the temperature coefficient measurement results and current sensing accuracy!

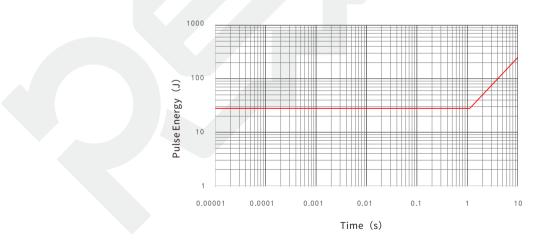

Resistance	L	W	A	В	т	D	а	b	c	Packaging	Quantity Per Reel	Net Weight
25mΩ	12±0.38	6.35±0.38	2.36±0.25	4.83±0.76	0.25	4.5±0.76	3.23	7.24	3.18	Tape&Reel	1200pcs	0.22±0.1

Performance


Test	Test Method	Standards	Typical	Max.
High Temperature Storage	1000h@+170°C, no load	AEC-Q200 TEST 3 MIL-STD-202 Method 108	∆R≤±0.5%	∆R≤±1.0%
Thermal Shock	-55°C, 15min~ambient temperature<20s~+155°C, 15min, 1000 Cycles	AEC-Q200 TEST 16 MIL-STD-202 Method 107	∆R≤±0.2%	∆R≤±0.75%
Bias Humidity	+85°C, 85%RH, load 10% rated power, 1000h	AEC-Q200 TEST 7 MIL-STD-202 Method 103	∆R≤±0.2%	∆R≤±0.5%
Load Life	2000h @ +70°C, rated power, 90min on, 30min off +70°C refers to terminal temperature	AEC-Q200 TEST 8 MIL-STD-202 Method 108	∆R≤±0.5%	∆R≤±1.0%
Resistance to Solvent	Immerse in solvent for 3 min and wipe 10 times. Three cycles of three solvents. Dry at ambient temperature after cleaning	AEC-Q200 TEST 12 MIL-STD-202 Method 215	Clear marking. N	o visible damage
Mechanical Shock	Half Sine Wave, peak acceleration 100g's, pulse duration 6ms, 3 times in each of six directions, on three different axes	AEC-Q200 TEST 13 MIL-STD-202 Method 213	∆R≤±0.01%	∆R≤±0.5%
Vibration	10-2KHz, 5g's, 20min/cycle, 12 cycles in each directions of X Y Z	AEC-Q200 TEST 14 MIL-STD-202 Method 204	∆R≤±0.01%	∆R≤±0.5%
Resistance to Solder Heat	+260°C tin bath for 10s	AEC-Q200 TEST 15 MIL-STD-202 Method 210	∆R≤±0.2%	∆R≤±0.5%
Solderability	+235°C tin bath for 3s	AEC-Q200 TEST 18 IEC 60115-1 4.17	No visible dama 95% minimum c	5
TCR	+20°C and +170°C, +20°C Ref.	AEC-Q200 TEST 19 IEC 60115-1 4.8	Refer to tested c max. value ≤ 40	,
Short Time Overload	5 times rated power, 5s	IEC 60115-1 4.13	∆R≤±0.2%	∆R≤±1.0%
Low Temperature Storage	-55°C for 96h, unpowered	IEC 60068-2-1	∆R≤±0.1%	∆R≤±0.5%

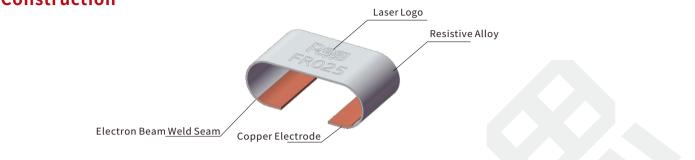
Temperature Coefficient of Resistance Test Curve


Derating Curve



Reflow Soldering Profile

Resistor Surface Temperature: Pre-Heat:+150°C~+190°C,60~120sec. Reflow:Above+220°C,90~150sec. Applicable Solder Composition:Sn-Ag-Cu.



Maximum Pulse Energy Curve

Construction

Marking

The first line (four digits) represents brand. The second line (five digits) represents tolerance and resistance.

Series	Illustration	Demonstration
EOAR		RESI:Brand F:Tolerance R025:Resistance

Storage Instructions

(1) Resistors should be stored at a temperature of 5 to 35 °C, with a humidity of <60% RH. The humidity should be kept as low as possible.

(2) Resistors should be protected from direct sunlight.

(3) Resistors should be stored in a clean and dry environment free of harmful gases (HCl, Sulfuric acid, H₂S, etc.)

(4) Do not move the resistor from the packaging unless use it.

(5) Under the above storage conditions, the resistor can be stored for at least 1 year.

Usage Suggestions

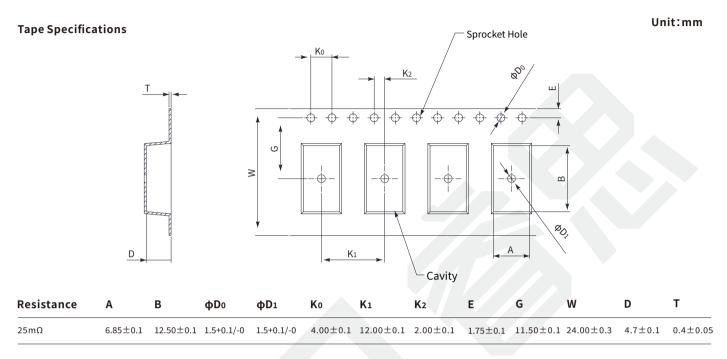
(1) Please protect the surface of the resistor during use. Prevent defects such as scratches, bumps, and oil stains on the surface.

(2) Do not use sharp tweezers to move the resistor. Scratches on the surface can cause resistance drift and resistor failure.

(3) When installing and using resistors, avoid the impact of mechanical stress on the resistor.

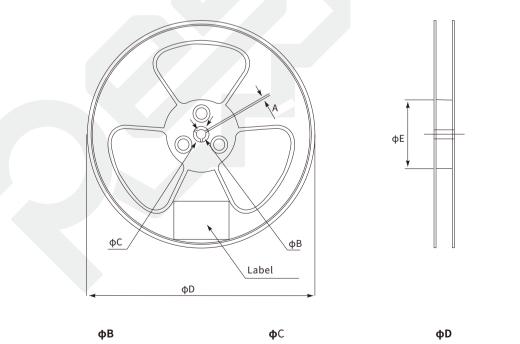
(4) The long-term operating power of resistors should be ≤ rated power to avoid resistance drift caused by long-term overload.

(5) Please refer to the derating curve when operating under high temperature conditions or poor heat dissipation environment.


(6) If the operating conditions exceed the pulse specified in the pulse curve, a systematic evaluation is required.

(7) If the resistor is not used after being moved from the packaging, it should be stored under vacuum to avoid risks such as poor welding caused by oxidation of the resistor.

EOAR High Precision Alloy Current Sensing Resistor



Packaging

Reel Specifications

Unit:mm

Α	фВ	ΦC	φD	φΕ
1.5 Min.	13.0 +0.5/-0.2	20.2 Min.	330±2	100±2

EOAR High Precision Alloy Current Sensing Resistor

Popular Part Numbers

Part Number	Tolerance	Resistance	TCR	Power	Max. Operating Current
EOAR0005DR025H9	±0.5%	25mΩ	±40ppm/°C	5W	14A
EOAR0005FR025H9	±1%	25mΩ	±40ppm/°C	5W	14A
EOAR0005JR025H9	±5%	25mΩ	±40ppm/°C	5W	14A

Trimming Free Technology

Product Images	5	C.				
	4026	3	2726		1216	
Series	PEWF4026	PEWM4026	PEWF2726	PEWM2726	PEWM1216	
Materials	FeCrAl	MnCu	FeCrAl	MnCu	FeCrAl	
TCR	±50ppm/°C	±100ppm/°C	±50ppm/°C	±100ppm/°C	±100ppm/°C	
Resistance Range	1~5mΩ	0.3~1mΩ	1~5mΩ	0.2~1mΩ	0.5mΩ	
Tightest Tolerance	±0.5%	±0.5%	±0.5%	±0.5%	±0.1%	
Rated Power	3W-7W	7W-12W	3W-7W	7W-12W	9W	

These series are based on a precision resistive alloy, welded by a specialized electron beam welding equipment. Both resistive alloy and welding equipment are independently designed and manufactured by C&B Electronics. Because of controlling the consistency of resistive alloys, precision processing ability and efficient welding, these series achieve a tight target tolerance after stamping without trimming.

ARCS

Trimming Free Technology

Structure

Pin, M3 Hole, Standard

Surface Treatment

Non-Plating Overall Nickel Plating Partial Nickel Plating Partial Nickel-Tin Plating

Size

5218	6918	7727	7736
8420	8436	8518	8536

Resistance

25μΩ 50μΩ 100μΩ 200μΩ

Rated Current

500A~1410A

Tolerance

 $\pm 0.5\%$

TCR

±50ppm/°C~±150ppm/°C

Output Voltage

35mV~60mV

ARCS series is an economical Mn-Cu shunt, which adopts a four-terminal Kelvin connection, electron beam welding process, and trimming free technology. It has the characteristics of low thermal EMF, low power coefficient, and low inductance.

Applications

Battery Management System Power Equipment Current Sensing Frequency Converter

Pin Type

Precision Shunt

Precision shunt adopts Mn-Cu alloy resistive technology and has two installation methods: base installation (RTBS) and bolt fixing (RTCS). The sensing tolerance can reach $\pm 0.1\%$ and the thermal EMF is less than 0.05μ V/°C. The shunt has good longterm stability.

Rated Current **50A~20000A**

Tolerance

±0.1%

tcr ±20ppm/°C

Resistance Range

$2.5\mu\Omega \sim 5m\Omega$

Output Voltage **50mV~75mV**

Rated Current

Tolerance

±0.1%

±20ppm/°C

Resistance Range

$0.167m\Omega \sim 7.5m\Omega$

Output Voltage

50mV~75mV

CB350M6918A Series, Automotive, 0.5% Tolerance Operating Temperature -40°C~+105°C Shunt Based Current Sensor

1、Characteristics

- Current Sensing: Measurement Range:-8000A~+8000A
- Continuous Operating Range:-350A~+350A
- Measurement Accuracy: ±0.5%(MAX)
- Resolution: 10mA
- Temperature Sensing: Measurement Range: -50°C~+150°C
- Measurement Error: \pm 3°C (MAX)
- Resolution: 0.1°C
- Communication Protocol:CAN2.0 A/B
- Selectable Data Format
- Configurable CAN ID
- Configurable CAN Speed: 250Kbps-1Mbps
- Supply Voltage:6VDC~18VDC
- Operating Temperature Range:-40°C~+105°C
- Power Consumption: ≤216mW @12VDC
- Galvanic Isolation: 3000VAC
- \bullet The product design is based on ISO 26262 and it is ASIL C compliant.

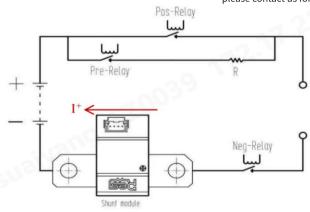
2、Applications

- Automotive Current Monitor
- Grid Energy Storage
- •UPS
- Charging Station

3、Introduction

CB350M6918A current sensor is an automotive current sensing module, which can be used to measure bidirectional DC current. Featuring high accuracy, low power consumption, wide operating temperature range, excellent response speed, temperature stability and anti-interference ability.

The sensor is designed based on low-TCR shunt, adopts highprecision ADC, communicates through CAN2.0 A/B protocol, and has large ranges of current and temperature measurement capabilities, and current compensation at whole temperature range.


The sensor meets the operating temperature range of -40°C~+105°C, can apply to the continuous operating current of -350A~+350A at the whole temperature range, and the current measurement accuracy is no more than \pm 0.5% in the range of +20A~+350A or -350A~-20A.

Power supply of CB350M6918A current sensor is from 6VDC to 18VDC. Its power consumption is controlled below 216mW (12VDC), and it can realize complete high-low voltage isolation, which can be applied to the main positive electrode or the main negative electrode of the battery system.

Sensor Information

Part Number	Shunt Thickness	Resistance	Terminal Resistor
CB350M6918A1SS00	3mm	50μΩ	Yes
CB350M6918A1SN00	3mm	50μΩ	No

[1] For part numbers not included in the table, please contact us for technical support.

Typical Application

で記録 では、 This datasheet provides CB350M 6918A current sensor reliability data and design suggestions. For the latest information of the datasheet and more RESI products, please visit www.resistor.today. Before actual design, please refer to the latest version of CB350M6918A current sensor datasheet.

Content

1. Characteristics	01
2. Applications	01
3.Introduction	01
4、Revision	02
5、Specifications	03
5.1 Limit Parameters	03
5.2 General Parameters	03
5.3 Typical Characteristic Curve	05
6、Test Standards	09
7、Communication	11
7.1 CAN Protocol	11
7.2 Data Frame	12

7.3 Bus Topology	
7.4 Measuring Mode	
8、Mechanical Structure	18
8.1 Dimensions	
8.2 Copper Bar Connection	18
8.3 Connector	
8.4 Connector Definition	19
9、Typical Applications	
10、Storage & Packaging	21
10.1 Storage	21
10.2 Packaging	21
11、Part Number Information	22

4、Revision

Date	Revised Content	Note
2023.02	/	A0
2023.04.06	Flat washer is removed in Copper Bar Connection Diagram	A1
2023.08.29	Change the product packaging	A2
2023.09.14	Modify limit parameters of CAN, format B of data frame, order of connector pin and start-up time test curve	A3
2024.11.06	Add ASIL C compliance	
2024.12.05	Update the examples of Format B message frame	A5

5、Specifications

5.1 Limit Parameters

Note: Product will affect its reliability and cause unexpected permanent damage if operating under limit parameters for long time.

Parameter	Condition	Min.	Typical	Max.	Unit
Supply Voltage				30	VDC
Current Measurement Range	±1400A			10	s
	±8000A			50	ms
CANInterface	Configured 120Ω Terminal Resistor (Continuous Power Supply)			6	V
	ESD			8	κv
Operating Temperature		-40		105	°C
Storage Temperature		-40		125	°C
Humidity				95	%RH

5.2 General Parameters

Test Conditions: Ambient Temperature 25 °C (Unless Otherwise Noted)

Parameter	Condition	M in.	Typical	Max.	Unit
PowerSupply					-
SupplyVoltage		6	12	18	VDC
Operating Current	6V	10	14	18	mA
	12V	10	14	18	mA
	18V	10	14	18	mA
	6V	60	85	108	mW
PowerConsumption	12V	120	170	216	mW
	18V	180	250	324	mW
Start-Up Time	Required time from power-on to sending the first frame valid message	100	130	150	ms
Current Measurement (- 4	0°C~+105°C)	•			-
	-20A~+20A		±50	±100	mA
Accuracy	+20A~+350A or -350A~-20A			±0.5	%
Accuracy	+350A~+1000A or -1000A~-350A		±0.5	±1	%
	+1000A~+8000A or -8000A~-1000A		±1	±5	%
	-350A~+350A		Continuous		
Duration	±600A			5	min
Duration	±1400A			5	s
	±8000A			40	ms
Desclution	-350A~+350A		10		mA
Resolution -	>+350A or <-350A		60		mA
Linoarity	-350A~+350A		±0.02		%
Linearity -	>+350A or <-350A		±0.2		%

Test Conditions: Ambient Temperature 25 °C (Unless Otherwise Noted)

Parameter	Condition	Min.	Typical	Max.	Unit
Temperature Measurement		I			-
Measurement Range		-50		+150	°C
Measurement Error	-50°C~ +150°C	-3		+ 3	°C
Resolution			0.1		°C
Power & Temperature Rise		•			•
D C Impedance		45	50	55	μΩ
Inductance				3	nH
Temperature Rise ——	±350A@85℃ Copper Bus Bar 20mm*3mm, 15Nm			60	°C
	±350A@85°C Copper Bus Bar 20mm*3mm, 15Nm			60	°C
Communication					
Protocol	CA N 2.0 A/B				
Communication Speed		250	500	1000	Kbps
Terminal Resistor	With Terminal Resistor	108	120	132	Ω
	Without Terminal Resistor				
Output Rate of Current Message		10	10	1000	ms
Output Rate of Temperature Message		10	100	1000	ms
Isolation					
Galvanic Isolation			3000		VAC
Creepage Distance			5.5		mm
Clearance			4.1		mm

5.3 Typical Characteristic Curve

5.3.1 S

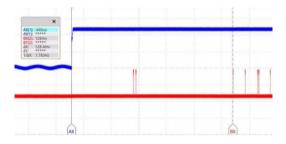


Figure 5-1 Sample1 Start-Up Time Test Curve

Figure 5-3 Sample3 Start-Up Time Test Curve

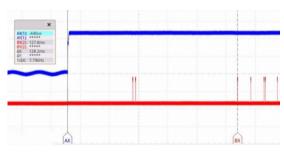


Figure 5-5 Sample5 Start-Up Time Test Curve

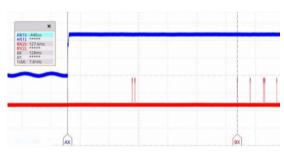


Figure 5-7 Sample7 Start-Up Time Test Curve

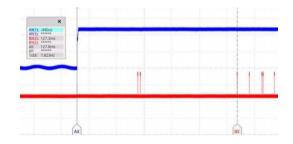


Figure 5-2 Sample2 Start-Up Time Test Curve

Figure 5-4 Sample4 Start-Up Time Test Curve

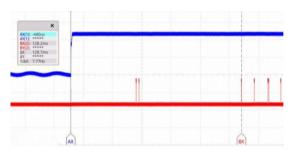


Figure 5-6 Sample6 Start-Up Time Test Curve

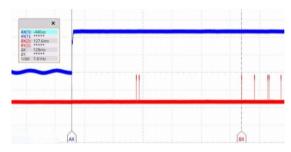


Figure 5-8 Sample8 Start-Up Time Test Curve

[1] A channel acquires data of power supply, VCC and GND.

 \cite{A} [2] B channel acquires data of CAN differential signal, CAN_H and CAN_L.

[3] ΔX is the time interval from power-on to sending the first frame valid message

5.3.2 Current Consumption Test Curve

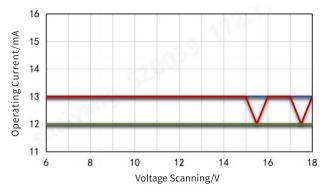


Figure 5-9 -40°C Current Consumption Test Curve

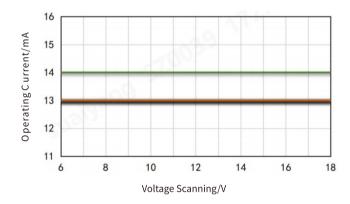


Figure 5-10 +25°C Current Consumption Curve

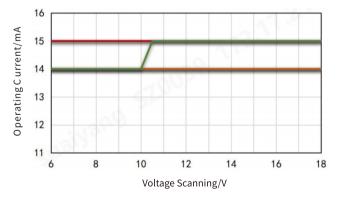


Figure 5-11 +105°C Current Consumption Curve

5.3.3 Low-Current Accuracy Test Curve

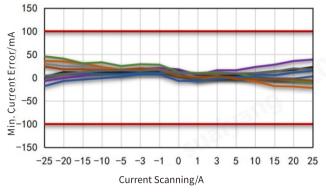


Figure 5-12-40°C Low-Current Test Accuracy@Min. Current Error

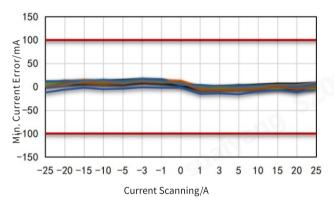


Figure 5-14 + 25°C Low-Current Test Accuracy@Min. Current Error

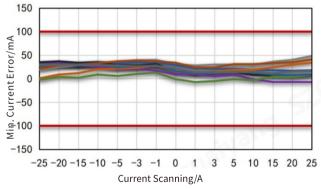


Figure 5-16 + 105°C Low-Current Test Accuracy@Min. Current Error

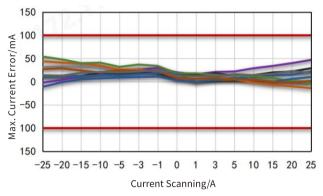


Figure 5-13-40°C Low-Current Test Accuracy@Max. Current Error

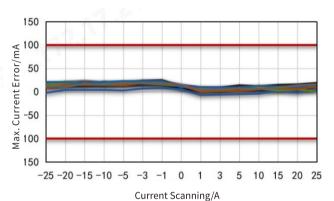


Figure 5-15 + 25°C Low-Current Test Accuracy@Max. Current Error

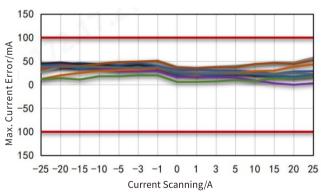


Figure 5-17 + 105°C Low-Current Test Accuracy@Max. Current Error

5.3.4 High-Current Accuracy Test Curve

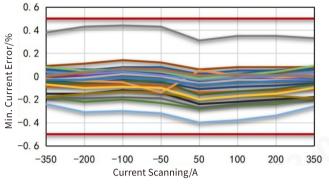


Figure 5-18 -40°C High-Current Test Accuracy@Min. Current Error

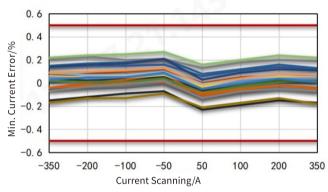
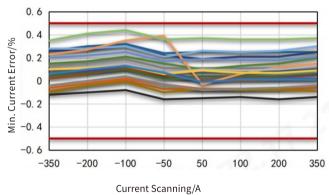



Figure 5-20 +25°C High-Current Test Accuracy@Min. Current Error

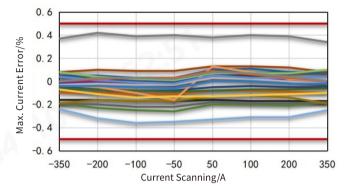


Figure 5-19 -40°C High-Current Test Accuracy@Max. Current Error

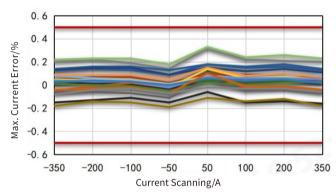


Figure 5-21+25°C High-Current Test Accuracy@Max. Current Error

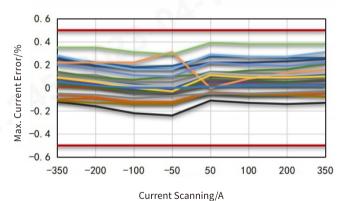


Figure 5-23 +85°C High-Current Test Accuracy@Max. Current Error

6、Test Standards

Test No.	Test Standards	Test Items
General inspec	tion	
1	/	Appearance
2	/	Dimension
3	/	Weight
4	/	Function Check
Electrical load	s	
5	VW 80000	E-01 Long-term overvoltage
6	VW 80000	E-02 Transient overvoltage
7	VW 80000	E-03 Transient undervoltage
8	VW 80000	E-04 Jump start
9	VW 80000	E-05 Load dump
10	VW 80000	E-06 Ripple voltage
11	VW 80000	E-07 Slow decrease and increase of the supply voltage
12	VW 80000	E-08 Slow decrease, quick increase of the supply voltage
13	VW 80000	E-09 Reset behavior
14	VW 80000	E-10 Brief interruptions
15	VW 80000	E-11 Start pulses
16	VW 80000	E-12 Voltage curve with vehicle electrical system control
17	VW 80000	E-13 Pin interruption
18	VW 80000	E-14 Connector interruption
19	VW 80000	E-15 Reverse polarity
20	VW 80000	E-16 Ground potential difference
21	VW 80000	E-17 Short circuit in signal cable and load circuits
22	VW 80000	E-18 Insulation resistance
23	VW 80000	E-19 Quiescent current
24	VW 80000	E-20 Dielectric strength
25	/	Continuous power test
26	ISO 7637-2:2011	CI pulse 1
27	ISO 7637-2:2011	CI pulse 2a / 2b
28	ISO 7637-2:2011	CI pulse 3a / 3b
29	ISO 7637-2:2011	CI pulse 4
30	ISO 7637-2:2011	CI pulse 5b
31	ISO 10605:2008	ESD
32	CISRP 25	Radiated emissions
33	CISRP 25	Conducted emissions
34	ISO 11452-2	Radiated immunity
35	ISO 11452-4	Bulk current injection

Test No.	Test Standards	Test Items
Climatic loa	ds	
36	VW 80000	K-01 High-/low-temperature aging
37	VW 80000	K-02 Incremental temperature test
38	VW 80000	K-03 Low-temperature operation
39	VW 80000	K-05 Thermal shock (component).
40	VW 80000	K-14 Damp heat, constant
41	VW 80000	L-02 Service life test - high-temperature durability testing
42	VW 80000	L-03 Service life test – Temperature cycle durability testing
43	IEC 60068-2-30	Dew test
44	GB/T 2423.34	Composite temeperature & humidity cyclic test
Mechanical	loads	
45	VW 80000	M-01 Free fall
46	VW 80000	M-04 Vibration test
47	VW 80000	M-05 Mechanical shock
48	VW 80000	M-08 Protection against foreign bodies - IP0x to IP4x, A, B, C, D
Regulation \	/alidation	
49	GB/T 30512-2014	Requirements for prohibited substances on automobiles
50	UL-94:2016	Vertical Burning Test

7、Communication

7.1 CAN Protocol

CB350M6918A applies CAN2.0 A/B communication protocol and communicates through data frame. The data length of message frame is between 1-8 bytes. The default CAN speed is 500Kbps. 1Mbps/250Kbps are also available. There are two kinds of data frame, standard frame and extended frame, as shown in Figure 7-1 and Figure 7-2. Standard frame has an ID of 11 bytes, and the extended frame has an ID of 29 bytes. The defaulted data frame is standard frame, which can be adjusted to the extended frame. The defaulted data format is Motorola, which can be adjusted to Intel.

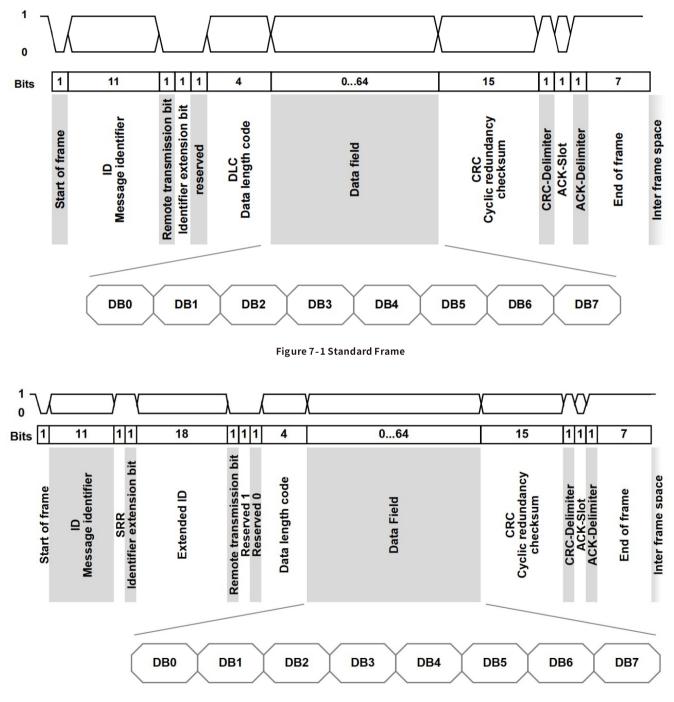


Figure 7-2 Extended Frame

7.2 Data Frame

The data frame of CB350M6918A can apply multiple data formats, as shown in Table 7-1. Among them, both formats A and B are composed of two frames of messages, which transmit real-time current and real-time temperature. Both formats C and D are composed of one frame of message. Format C transmits real-time current and real-time temperature in one frame of message. Format D only transmits real-time current. The data frame format defaults to format A.

Data Format Type	Data Frame Content	CANID ^[1]	Data Length	Characteristics
Format A	Real-Time Current	0x0301	6	32-bit current value is a signed integer. Available Unit: mA/μA
	Real-Time Temperature	0x0325	6	32-bit temperature value is a signed integer, in 0.1°C
Format B	Real-Time Current	0x03C2	8	24-bit current value is an unsigned integer with offset 0x800000, in mA
FormatB	Real-Time Temperature	0x06C2	8	8-bit NTC temperature value is a signed short integer, in °C 8-bit MCU temperature value is a signed short integer, in °C
Format C	Format C Real-Time Current & 0x03C2 8		24-bit current value is an unsigned integer with offset 0x800000, in mA 16-bit temperature value is a signed short integer. Unit: 0.1 ℃	
Format D	Real-Time Current	0x03C0	8	32-bit current value is an unsigned integer with offset 0x80000000, in m A

Table 7-1. Message F	Frame D ata Format
----------------------	--------------------

[1] The CAN ID in the above table are default and can be modified by commands (refer to the relevant application documents for details)

7.2.1 Format A

Format A consists of current data frame and temperature data frame, each with a 4-bit cyclic counter and a 2-bit module exception flag. In addition, the current data frame has an 8-bit current channel flag, a 32-bit current value, a 1-bit unit selection and a 1-bit reserved bit. The temperature data frame has an 8-bit temperature channel flag, a 32-bit temperature value and a 2-bit reserved bit. The details of the message are shown in Table 7-2, Examples of message and decoding information are shown in Table 7-3 and Table 7-4.

Table 7-2. Format A Message

Frame Type	CANID	Length	byte0	byte1 I		byte3	byte4	byte5
Current (mA/µA)	0x0301	6	0x00 ⁽¹⁾	B[7]: Reserved Bit ^[2] B[6]: Current Unit ^[3] B[5]: M easurement Error Flag ^[4] B[4]: Overcurrent Flag ^[5] B[3:0]: Cyclic Counter ^[6]		32-bit S Current]
Temperature (0.1°C)	0x0325	6	0x04 ^[8]	B[7:6]: Reserved Bit ^[2] B[5]: Overtemperature Flag of Shunt ^[9] B[4]:Overtemperature Flag of PCBA ^[10] B[3:0]: Cyclic Counter ^[6]		32-bit S nperatu		e ^[11]

[1] Current Channel Flag.

[2] Reserved bit, default is 0.

[3] Current Unit, 0: mA; 1: μA

[4] Measurement error flag, active when the ADC fault is detected, indicates that the current value is invalid. When alarming, the current sensor still sends and receives data messages, but the current value in the message is invalid. The measurement deviation may exceed the range specified in the technical specification.

[5] Overcurrent error flag. Default is inactive. It can be defined by the user.

[6] Cyclic Counter, 0x0-0xF cycle count value.

[7] 32-bit current data uses big-endian by default. The high bit is followed by the low bit. It is a signed integer.

[8] Temperature Channel Flag.

[9] Overtemperature Flag of Shunt, active when the shunt temperature is detected to be more than 150 °C, indicates that the sensor may have no message output or low accuracy. When alarming, the current sensor can still send and receive data messages in a short time, and the current value in the message is valid. If overtemperature for a long time, the performance of current sensor can be damaged. At this time, it is recommended to limit the output power of BMS.

[10] Overtemperature Flag of PCBA, active when the board temperature is detected to be more than 125 °C, indicates that the sensor may have no message output or low accuracy. When alarming, the current sensor can still send and receive data messages in a short time, and the current value in the message is valid. If overtemperature lasts for a long time, the performance of current sensor can be damaged. Then, it is recommended to limit the output power of BMS.

[11] 32-bit temperature data uses big-endian by default. The high bit is followed by the low bit. It is a signed integer. Unit: 0.1 °C

Example	D B 0	DB1	DB2	D B 3	DB4	D B 5				
1	0x00	0x00	0x00	0x00	0x03	0xE8				
2	0×00	0x00	0xFF	0xFF	0xFC	0x18				
3	0x04	0x00	0x00	0x00	0x01	0x0A				
4	0x04	0x00	0xFF	0xFF	0xFE	0xF6				

Table 7-3. Examples of Format A Message Frame

Table 7-4. Decoding Information of Table 7-3 Examples

Example	Byte	Value	Message				
	D B0	0x00	Current Channel Flag.				
1	DB1	0x00	Reserved bit 0, unit: mA, no measurement error, cycle sequence 0				
	DB2-DB5 0x00003E8		Current: 1000mA, i.e. 1A				
	DB0	0x00	Current Channel Flag.				
2	DB1	0x00	Reserved bit 0, unit: mA, no measurement error, cycle sequence 0				
	D B2 - D B5	0xFFFFFC18	Current: -1000mA, i.e1A				
	D B0	0x04	Temperature Channel Flag.				
3	DB1	0x00	Reserved bit 0, Shunt temperature $<$ 150 °C, PCBA temperature $<$ 125 °C, cycle sequence 0				
	D B2 - D B5	0x0000010A	The Temperature is + 26.6 °C				
	D B0	0x04	Temperature Channel Flag.				
4	DB1	0x00	Reserved bit 0, Shunt temperature $<$ 150 °C, PCBA temperature $<$ 125 °C, cycle sequence 0				
	D B2 - D B5	0xFFFFFEF6	The Temperature is - 26.6 °C				

7.2.2 Format B

Format B consists of current data frame and temperature data frame, each with a 4-bit cyclic counter. In addition, the current data frame has a 24-bit current value, a 2-bit flag bit, an 8-bit software version, an 8-bit check bit and an 18-bit reserved bit. The temperature data frame has an 8-bit temperature value, a 4-bit status bit, an 8-bit check bit and a 32-bit reserved bit. The details of the message are shown in Table 7-5, Examples of message and decoding information are shown in Table 7-6 and Table 7-7.

	Table 7-5. Format B Message												
Frame Type	CANID	Length	byte0	byte1	byte2	byte3	byte4	byte5	byte6	byte7			
Current (mA)	0x03C2	8	B[7:4]: Cyclic Counter ^[1] B[3:2]:Reserved Bit ^[2] B[1]: Hardware Fault Flag ^[3] B[0]:ADC Conversion Error ^[4]	:2]: Reserved Bit ^[2] : Hardware Fault Flag ^[3] Current Value Reserved Bit ^[2] Reserved Bit ^[2]				d Bit ^[2]	Software Version	CRC-8Check SAEJ1850 ^[6]			
Temperature (°C)	0x06C2	8	B[7:4]: Cyclic Counter ⁽¹⁾ B[3]:SHUNT Over Temperature Flag ⁽⁷⁾ B[2]:PCBA Over Temperature Flag ⁽⁸⁾ B[1]:SHUNT Temperature measurement Error Flag. ⁽⁹⁾ B[0]:PCBA Temperature measurement Error Flag ⁽¹⁰⁾	SHUNT (°C)	PCBA (°C) [12]		Reserv	ed Bit ^[2]		CRC-8Check SAEJ1850 ^[6]			

CB350M6918A

CB_AMC_UM – DECEMBER 2024

[1] Cyclic Counter, 0x0-0xF cycle count value.

[2] Reserved bit, default is 0.

[3] Hardware Fault Flag, active when a hardware fault is detected, indicates that the ADC may have a fault.

[4] ADC conversion error flag. When ADC sampling timeout exceeded, indicating the present current value is invalid. When flag occurs,

the sensor can still receive and send message, but the current value of the message is invalid. The measured value may be out of the specifications range.

[5] 24-bit current data uses big-endian by default. The high bit is followed by the low bit. It is an unflaged integer. Unit: mA

The actual value is expressed as V=D-0x800000. D is the value in the message.

[6] CRC-8 Check generates a check code for the first 7 bytes of data.

[7] SHUNT over temperature flag. When measured temperature of SHUNT is over 150°C, it will be no message or measurement accuracy decreased.

 $When flag \ occurs, the \ sensor \ can \ still \ receive \ and \ send \ message \ in \ a \ short \ period \ and \ the \ current \ value \ in \ the \ message \ is \ normal.$

If the sensor is over temperature for a long time, it could affect the functions of the sensor. It is recommended to derate BMS output power.

[8] PCBA over temperature flag. When measured temperature of PCBA is over 125°C, it will be no message or measurement accuracy decreased.

When flag occurs, the sensor can still receive and send message in a short period and the current value in the message is normal.

If the sensor is over temperature for a long time, it could affect the functions of the sensor. It is recommended to derate BMS output power.

[9] SHUNT temperature measurement error flag. Sign sets when SHUNT temperature measurement is error.

 $[10] \, {\sf PCBA} \, temperature \, measurement \, error \, flag. \, {\sf Sign} \, sets \, when \, {\sf SHUNT} \, temperature \, measurement \, is \, error.$

[11] SHUNT temperature, 8-bit temperature data by default unflaged integers. Unit: °C. The actual value expression is V=D-55. D is the value in the message. [12] PCBA temperature, 8-bit temperature data by default unflaged integers. Unit: °C. The actual value expression is V=D-55. D is the value in the message.

	Table 7-6. Examples of Format B Message Frame												
Example	DB0	DB1	DB2	DB3	DB4	DB5	DB6	DB7					
1	0x00	0x80	0x03	0xE8	0x00	0x00	0x64	0x83					
2	0x00	0x7F	0xFC	0x18	0x00	0x00	0x64	0xAB					
3	0x00	0x50	0x50	0x00	0x00	0x00	0x00	0x3F					
4	0×00	0x1E	0x1E	0x00	0x00	0×00	0×00	0x65					

Table 7-7. Decoding Information of Table 7-6 Examples

Example	Byte	Value	Message
	DB0	0x00	Cycle sequence 0, reserved bit 0, no hardware fault, No ADC conversion error
	DB1-DB3	0x8003E8	Current: 1000mA, i.e. + 1A
1	DB4-DB5	0x0000	Reserved bit 0
	DB6	0x64	Software version is V 1.00
	DB7	0x83	CRC-8 C heck Value
	DB0	0x00	Cycle sequence 0, reserved bit 0, no hardware fault, No ADC conversion error
	DB1-DB3	0x7FFC18	Current: -1000mA, i.e1A
2	DB4-DB5	0x0000	Reserved bit 0
	DB6	0x64	Software version is V 1.00
	DB7	0xAB	CRC-8 C heck Value
	DB0	0x00	Cyclesequence0,normalSHUNT&PCBAtemperature,normalSHUNT,PCBAtemperature
	DB1	0x50	SHUNT :+ 25°C
3	DB2	0x50	PCBA : + 25°C
	DB3-DB6	0x00000000	Reserved bit 0
	DB7	0x3F	CRC-8 C heck Value
	DB0	0x00	Cycle sequence 0, normal SHUNT & PCBA temperature, normal SHUNT、PCBA temperature
	DB1	0x1E	SHUNT :- 25°C
4	DB2	0x1E	PCBA :- 25°C
	DB3-DB6	0x00000000	Reserved bit 0
	DB7	0x65	CRC-8 C heck Value

7.2.3 Format C

Format C consists of one frame of message, including a 24-bit current value, an 16-bit temperature value, a 4-bit cyclic counter, a 2-bit status bit, a 1-bit flag bit, an 8-bit check bit and a 9-bit reserved bit. The details of the message are shown in Table 7-8, Examples of message and decoding information are shown in Table 7-9 and Table 7-10.

Table 7-8. Format C Message

Frame Type	CANID	Length	byte0	byte1	byte2	byte3	byte4	byte5	byte6	byte7
Current (mA) Temperature (0.1°C)	0x03C2	8	B[7:4]: Cyclic Counter ^[1] B[3:2]: Malfunction Status ^[2] B[1]: Hardware Fault Flag ^[3] B[0]:Reserved Bit ^[4]	Curre	bit Unsigr nt Value (x800000	Offset	16-bit S Tempe Valı	erature	Reserved Bit ^[4]	CRC-8Check SAEJ1850 ^[7]

[1] Cyclic Counter, 0x0-0xF cycle count value.

[2] Malfunction Status, '0': Normal; '1': ADC Conversion Error; '2': Current exceeds 1550A; '3': Shunt temperature exceeds 150 °C or PCBA temperature exceeds 125 °C.

[3] Hardware Fault Flag, active when a hardware fault is detected, indicates that the ADC may have a fault.

[4] Reserved bit, default is 0.

[5] 24-bit current data uses big-endian by default. The high bit is followed by the low bit. It is an unsigned integer. Unit: mA

The actual value is expressed as V=D-0x800000. D is the value in the message. [6] 16-bit temperature data uses big-endian by default. The high bit is followed by the low bit. It is a signed integer. Unit: °C.

[7] CRC-8 Check generates a check code for the first 7 bytes of data.

Table 7-9. Examples of Format C Message Frame	Table 7-9	. Examples o	f Format C	Message Frame
---	-----------	--------------	------------	---------------

Example	D B 0	DB1	DB2	D B 3	DB4	DB4 DB5		DB7
1	0x00	0x80	0x03	0xE8	0x01	0x0A	0x00	0x2E
2	0x00	0x7F	0xFC	0x18	0xFE	0xF6	0x00	0x9D

Table 7-10. Decoding Information of Table 7-9 Examples

Example	Byte	Value	Message					
	DB0	0x00	Cycle sequence 0, normal function, no hardware fault, reserved bit 0					
	DB1-DB3	0x8003E8	Current: 1000mA , i.e. +1A					
1	D B4-D B5	0x010A	The temperature is +26.6 °C					
	DB6 0x00		Reserved bit 0					
	DB7 0x2E		CRC- 8 Check Value					
	D B0	0x00	Cycle sequence 0, normal function, no hardware fault, reserved bit 0					
	DB1-DB3	0x7FFC18	Current: -1000mA, i.e1A					
2	2 DB4-DB5 0xFEF6		The temperature is -26.6 °C					
	DB6 0x00		Reserved bit 0					
	D B7 0x9D		CRC- 8 Check Value					

7.2.4 Format D

Format D consists of one frame of message, including a 32-bit current value, a 1-bit flag bit, a 7-bit status bit, an 8-bit software version, a 16-bit reserved byte and no temperature value. The details of the message are shown in Table 7-11, Examples of message and decoding information are shown in Table 7-12 and Table 7-13.

Frame Type	CANID	Length	byte0	byte1	byte2	byte3	byte4	byte5	byte6	byte7
Current (mA)	0x03C0	8		2-bit Uns Current fset 0 x 80	Value		B[0]:Error Flag ^[2] B[7:1]: Error Status ^[3]	Reserve	ed Bit ^[4]	Software Version

[1] 32-bit current data uses big-endian by default. The high bit is followed by the low bit. It is an unsigned integer. Unit: mA. The actual value is expressed as V=D-0x80000000. D is the value in the message.

[2] Error Flag, '0': Normal; '1': Error;

[3] Error Status, 0x64: no error; 0x50: ADC hardware error; 0x51: ADC conversion error; 0x60: Temperature exceeds the limit (current value remains measured).

[4] Reserved bit, default is 0.

Table 7-12. Examples of Format D Message Frame

Example	D B 0	DB1	DB2	D B 3	DB4	DB5	DB6	DB7
1	0x080	0x00	0x03	0xE8	0xC8	0x00	0x00	0x64
2	0x7F	0xFF	0xFC	0x18	0xC8	0x00	0x00	0x64

Copyright @ Shenzhen C & B Electronics Co., Ltd

Table 7-13. Decoding Information of Table 7-12 Examples

Example	Byte	Value	Message
	D B0- D B3	0x800003E8	Current: 1000mA, i.e. 1A
1	DB4 0xC8		N ormal, no error
L L	1 DB5-DB6 0x0000		Reserved bit 0
	DB7	0x64	Software version is V 1.00
	D B0- D B3	0x7FFFFC18	Current: - 1000mA, i.e 1A
2	DB4	0xC8	N ormal, no error
2	D B5 - D B6	0x0000	Reserved byte 0
	DB7	0x64	Software version is V 1.00

7.3 Bus Topology

CB350M6918A can be applied to a bus-type topology and transmits network information to each node through the bus, as shown in Figure 7-3.

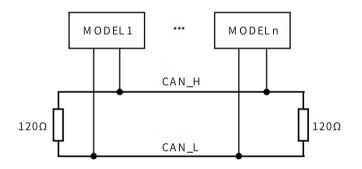
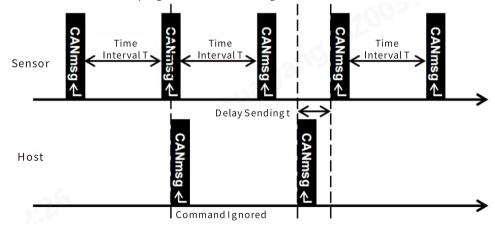
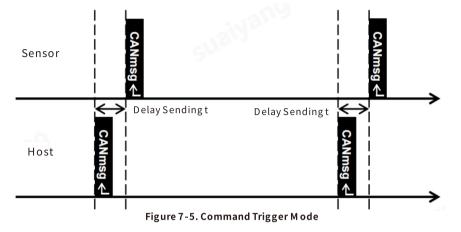



Figure 7-3 CAN Bus Topology

7.4 Measuring Mode

7.4.1 Time Interval + Command Trigger Mode

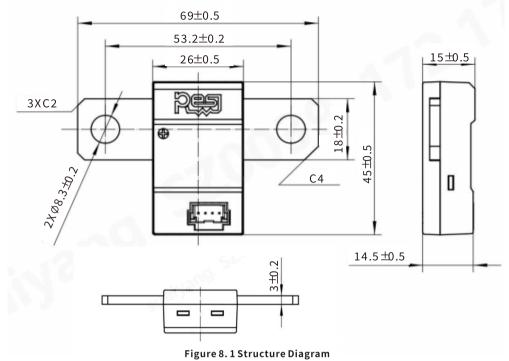
The sensor samples data at a fixed time interval set by the system and sends message to the CAN bus. At the same time, It can also respond to the trigger command. In the sampling period, the measurement will be active immediately when the trigger command is received and sends message to CAN bus. No need to wait for next sampling interval. As shown in Figure 7-4.



After the sensor receives the trigger command, if it is sampling or sending CAN message, the present trigger command will be ignored. When the command is valid, a sampling and sending process will be started, and the time interval T for the next sending will be automatically calculated from the moment of this trigger. As Figure 7 - 4 shown, there is a delay between the sensor receiving a valid trigger command and sending the CAN message, which is less than 1 ms.

7.4.2 Command Triggered Mode

Under this mode, the sensor will not automatically send message, but keep sampling, calculating and filtering data at a fixed time interval. The sensor will send the recent sampling data to CAN bus and reset the s tart of time interval when a valid command is received from the host, as Figure 7 - 5 shown.



As Figure 7 - 5 shown, the sensor sends data to the CAN bus after receiving at rigger command from the host, with a delay of less that 1 ms between receiving the command and sending the data.

8、Mechanical Structure

8.1 Dimensions

8.2 Copper Bar Connection

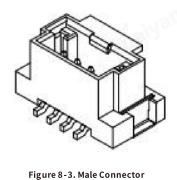

- Recommended Bolts :M8
- Recommended Torque:15- 20Nm
- Recommended Width * Thickness of Copper Bar:24mm*3mm
- Recommended Length of Overlap between Shunt and Copper Bar:20mm
- Do not use a flat washer between the copper bar and the shunt
- Keep the surface of shunt and copper bar clean and free of scratches

Figure 8-2. CB350M6918A Copper Bar Connection Diagram

8.3 Connector

Connector	Manufacturer	Pin Count	Part #
Male Connector ^[1]	Molex	4	5600200420
Recommended Female Connector ^[2]	Molex	4	5601230400

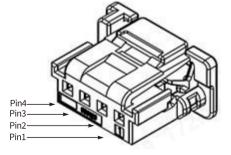


Figure 8-4. Female Connector(Wire end reference)

[1] For more information about male connector, please refer to Molex datasheet: https://www.molex.com/pdm_docs/sd/5600200420_sd.pdf [2]For more information about female connector, please refer to Molex datasheet : https://www.molex.com/pdm_docs/sd/5601230400_sd.pdf

8.4 Connector Definition

Pin N o.	Description
Pin4	vcc
Pin3	CAN_L
Pin2	CAN_H
Pin1	GND

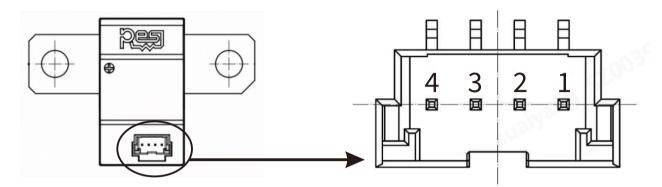


Figure 8-5. Male Connector Molex5600200420

9、Typical Applications

CB350M6918A^[1] is used for accurate current measurement in key system. It is recommended that the current sensor connects to the circuit of positive or negative electrode of high-voltage end^[2] as shown in Figure 9-1 and Figure 9-2, to sample the current in the main circuit. The high and low voltage ends are galvanic isolated inside the sensor. It is recommended that the low voltage end connects to the battery management system, as shown in Figure 9-3, for real-time and accurate reporting of current data in key system.

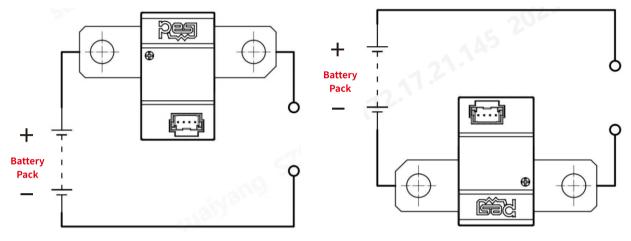


Figure 9-1. Recommended Use of Positive Electrode of High-Voltage End

Figure 9-2. Recommended Use of Negative Electrode of High-Voltage End

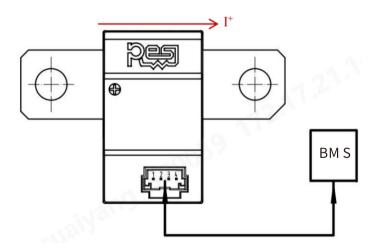


Figure 9-3. Recommended Use of

Low-Voltage End

[1] The "+" on the CB350M8536A current sensor housing is the direction of current entry, that is, the positive current direction.

[2] The high voltage electrode is installed as shown in the figure. The operating condition indicated by the sensor output value is: When the sensor outputs positive value, the battery pack is discharging;

When the sensor outputs negative value, the battery pack is charging.

10、Storage & Packaging

10.1 Storage

- Recommended storage at room temperature.
- The storage environment shall be clean, tidy, dry and free of harmful gases, and the packaging case shall be protected from direct sunlight.
- Anti-static bracelet or anti-static gloves shall be worn during installation, storage and handling.

10.2 Packaging

10.2.1 General Information

Packaging Element	Specifications					
SN P ⁽¹⁾	150					
Container Name	Carton					
Container Size	480*410*282 mm					
Unit Weight of Finished Product	42±5	g				

[1] SNP, Standard Number of Package

10.2.2 Auxiliary Materials Information

N o.	Materials	Size L*W *H(mm)	Quantity	
1	50-Grid EPE Tray	468*398*86	3	
2	EPE Tray Cover	460*390*10	1	
3	Anti-Static PE Bag	200*150	150	
4	Anti-Static PE Accordion Bag	900*510	1	

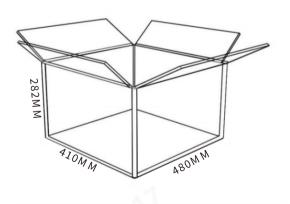


Figure 10-1. Carton Diagram

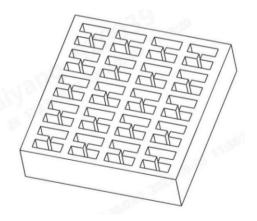


Figure 10-2. Structure Diagram of EPE

11、Part Number Information

	СВ	350	Μ	6918	A	1	S	S	NN
Series									
CB: C& B Current Sensor									
Rated Current									
350: 350A 600: 600A 1000: 1000A									
Tolerance									
B: 0.05% F: 0.1% L: 0.2% M: 0.5% K: 1%									
Shunt Size									
6918: 69mm×18mm 8518: 85mm×18mm 8436: 84mm×36mm 8536: 85mm×36mm									
Application Grade									
A: CAN Automotive T: CAN Industrial T: 485 Industrial									
Туре									
0: Standard, Thickness 4mm 1: Standard, Thickness 3mm 2: Customized									
Special Byte									
Standard K:25μΩ S:50μΩ P:100μΩ J:150μΩ									
Customized Custom Byte, 0~9, A~Z									
Special Byte									
Standard S:CAN Terminal Resistor N:No CAN Terminal Resistor									
Customized Custom Byte , 0 ~ 9, A ~ Z									
Code									

For more performance options and other r elevant information, please r efer to the official website: https://en.resistor.today/

CB600F8536A Series, Automotive, 0.1% Tolerance Operating Temperature -40°C~+105°C Shunt Based Current Sensor

1、Characteristics

- Current Sensing: Measurement Range: -20000A~+20000A - Continuous Operating Range: -600A~+600A
- Measurement Accuracy: ±0.1% (MAX)
- Resolution: 1mA
- Temperature Sensing: Measurement Range: -50°C~+150°C
- Measurement Error: ±3°C (MAX)
- Resolution: 0.1°C
- Communication Protocol:CAN2.0 A/B
- Selectable Data Format
- Configurable CAN ID
- Configurable CAN Speed: 250Kbps/500Kbps/1Mbps
- Supply Voltage:6V~18V
- Operating Temperature Range:-40°C~+105°C
- Power Consumption: ≤384mW @12VDC
- Galvanic Isolation: 3000VAC

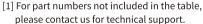
2、Applications

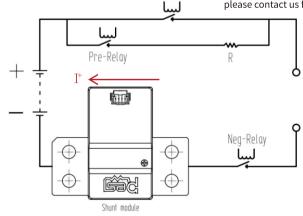
- Automotive Current Monitor
- Grid Energy Storage
- UPS
- Charging Station

3、Introduction

CB600F8536A current sensor is an automotive current sensing module, which can be used to measure bidirectional DC current. Featuring high accuracy, low power consumption, wide operating temperature range, excellent response speed, temperature stability and anti-interference ability.

The sensor is designed based on low-TCR shunt, adopts highprecision ADC, communicates through CAN2.0 A/B protocol, and has large ranges of current and temperature measurement capabilities, and current compensation at whole temperature range.


The sensor meets the operating temperature range of -40°C~+105°C, can apply to the continuous operating current of -600A~+600A at the whole temperature range, and the current measurement accuracy is no more than \pm 0.1% in the range of +50A~+600A or -600A~-50A.


Power supply of CB600F8536A current sensor is from 6VDC to 18VDC. Its power consumption is controlled below 384mW (12VDC), and it can realize complete high-low voltage isolation, which can be applied to the main positive electrode or the main negative electrode of the battery system.

Sensor Information

Part Number	Shunt Thickness	Resistance	Terminal Resistor
CB600F8536A1SS00	3mm	50μΩ	Yes
CB600F8536A1SN00	3mm	50μΩ	No

Pos-Relay

Typical Application

で記録 では、 This datasheet provides CB600F8536A current sensor reliability data and design suggestions. For the latest information of the datasheet and more RESI products, please visit www.resistor.today. Before a ctual design, please refer to the latest version of CB600F8536A current sensor datasheet.

Content

1. Characteristics	01
2. Applications	01
3.Introduction	01
4、Revision	02
5、Specifications	03
5.1 Limit Parameters	03
5.2 General Parameters	03
5.3 Typical Characteristic Curve	05
6、Test Standards	09
7、Communication	11
7.1 CAN Protocol	11
7.2 Data Frame	12

7.3 Bus Topology	
7.4 Measuring Mode	
8、Mechanical Structure	18
8.1 Dimensions	
8.2 Copper Bar Connection	18
8.3 Connector	
8.4 Connector Definition	19
9、Typical Applications	20
10、Storage & Packaging	21
10.1 Storage	21
10.2 Packaging	21
11、Part Number Information	22

4、Revision

Date	Revised Content	Note			
2023.01	/	A0			
2023.02	Revised maximum supply voltage from 26V to 18V.	A1			
2023.04.06	Flat washer is removed in Copper Bar Connection Diagram	A2			
2023.08.21	Change the product packaging	A3			
2023.09.14	Modify limit parameters of CAN.				

5、Specifications

5.1 Limit Parameters

Note: Product will affect its reliability and cause unexpected permanent damage if operating under limit parameters for long time.

Parameter	Condition	Min.	Typical	Max.	Unit
Supply Voltage				30	VDC
	±1500A			30	s
	±1800A			25	s
Current	±2500A			15	s
Measurement Range	±3000A			10	s
	±20000A			50	ms
CAN Interface	Configured 120 Ω Terminal Resistor (Continuous Power Supply)			6	V
CANIIIterrace	ESD			8	KV
Operating Temperature		-40		105	°C
Storage Temperature		-40		125	°C
Humidity				95	%RH

5.2 General Parameters

Test Conditions: Ambient Temperature 25 °C (Unless Otherwise Noted)

Parameter	Condition	Min.	Typical	Max.	Unit
Power Supply					
Supply Voltage		6	12	18	VDC
	6V	20	26	32	mA
Operating C urrent	12V	20	26	32	mA
	18V	20	26	32	mA
	6V	120	150	192	mW
Power Consumption	12V	240	300	384	mW
	18V	360	450	576	mW
Start-Up Time	Required time from power- on to sending the first frame valid message	100	130	150	ms
Current Measurement (- 40°	℃~+105°C)	1			
	-50A~+50A		±30	±50	mA
Accuracy	+ 50A~ + 600A or - 600A~ - 50A			±0.1	%
Accuracy	+ 600A~ + 3000A or - 3000A~ - 600A		±0.5	±1	%
	+ 3000A~ + 20000A or - 20000A~ - 3000A		<u>±1</u>	±5	%
	-600A~+600A		Continuous		
Duration	±1500A			25	s
Duration	±3000A			5	s
	±20000A			40	ms
Deselution	-600A~+600A		1		mA
Resolution	>600A or <-600A		10		mA
Lincority	-600A~+600A		±0.01		%
Linearity	>600A or<-600A		±0.1		%

CB600F8536A

CB_AMC_UM - SEPTEMBER 2023

Test Conditions: Ambient Temperature 25 °C (Unless Otherwise Noted)

Parameter	Condition	Min.	Typical	Max.	Unit
Temperature Measurement	· · · · ·				
M easurement Range		-50		+150	°C
M easurement Error	-50°C~ + 150°C	- 3		+ 3	°C
Resolution			0.1		°C
Power & Temperature Rise					-
DCImpedance		45	50	55	μΩ
Inductance				3	nH
Temperature Rise	±600A@25°C Copper Bus Bar 40mm*3mm, 15Nm			60	°C
lemperature kise	±600A@85°C Copper Bus Bar 40mm*3mm, 15Nm			60	°C
Communication					
Protocol	CAN2.0A/B				
Communication Speed		250	500	1000	Kbps
Terminal Resistor	With Terminal Resistor	108	120	132	Ω
Terminal Resistor	W ithout Terminal Resistor				
Output Rate of Current Message		10	10	1000	ms
Output Rate of Temperature Message		10	100	1000	ms
Isolation					
Galvanic Isolation			3000		VAC
Creepage D istance			6		mm
Clearance			4.5		mm

5.3 Typical Characteristic Curve

5.3.1 Start-Up Time Test Curve



Figure 5-1 Sample1 Start-Up Time Test Curve

Figure 5-3 Sample3 Start-Up Time Test Curve

Figure 5-5 Sample5 Start-Up Time Test Curve

Figure 5-7 Sample7 Start-Up Time Test Curve

Figure 5-2 Sample2 Start-Up Time Test Curve

Figure 5-4 Sample4 Start-Up Time Test Curve

Figure 5-6 Sample6 Start-Up Time Test Curve

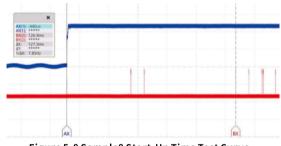
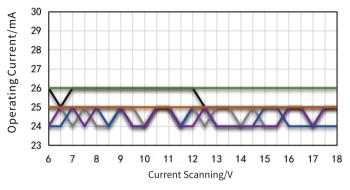
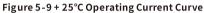
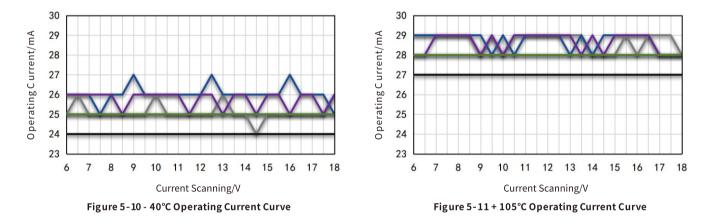


Figure 5-8 Sample8 Start-Up Time Test Curve


[1] A channel acquires data of power supply, VCC and GND.


[2] B channel acquires data of CAN differential signal, CAN_H and CAN_L.


[3] ΔX is the time interval from power-on to sending the first frame valid message

5.3.2 Operating Current Test Curve

5.3.3 O vercurrent Test Curve

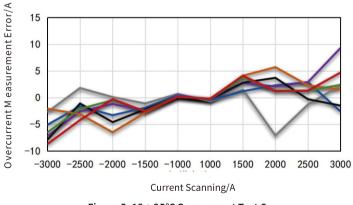
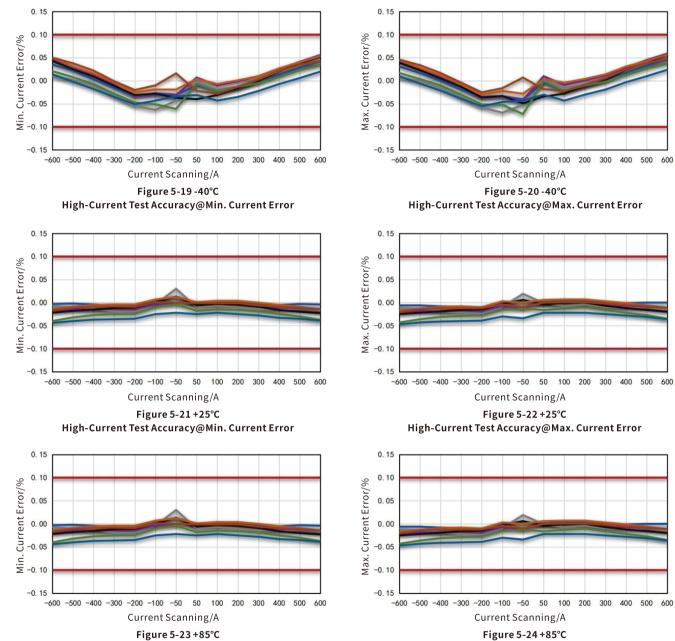



Figure 5-12 + 25°C Overcurrent Test Curve

5.3.5 High-Current Accuracy Test Curve

High-Current Test Accuracy@Min. Current Error

High-Current Test Accuracy@Max. Current Error

6、Test Standards

Test No.	o. Test Standards Test Items				
General inspec	ction				
1	/	Appearance			
2	/	Dimension			
3	/	Weight			
4	/	Function Check			
Electrical load	s				
5	VW 80000	E-01 Long-term overvoltage			
6	VW 80000	E-02 Transient overvoltage			
7	VW 80000	E-03 Transient undervoltage			
8	VW 80000	E-04 Jump start			
9	VW 80000	E-05 Load dump			
10	VW 80000	E-06 Ripple voltage			
11	VW 80000	E-07 Slow decrease and increase of the supply voltage			
12	VW 80000	E-08 Slow decrease, quick increase of the supply voltage			
13	VW 80000	E-09 Reset behavior			
14	VW 80000	E-10 Brief interruptions			
15	VW 80000	E-11 Start pulses			
16	VW 80000	E-12 Voltage curve with vehicle electrical system control			
17	VW 80000	E-13 Pin interruption			
18	VW 80000	E-14 Connector interruption			
19	VW 80000	E-15 Reverse polarity			
20	VW 80000	E-16 Ground potential difference			
21	VW 80000	E-17 Short circuit in signal cable and load circuits			
22	VW 80000	E-18 Insulation resistance			
23	VW 80000	E-19 Quiescent current			
24	VW 80000	E-20 Dielectric strength			
25	/	Continuous power test			
26	ISO 7637-2:2011	CI pulse 1			
27	ISO 7637-2:2011	CI pulse 2a / 2b			
28	ISO 7637-2:2011	CI pulse 3a / 3b			
29	ISO 7637-2:2011	CI pulse 4			
30	ISO 7637-2:2011	CI pulse 5b			
31	ISO 10605:2008	ESD			
32	CISRP 25	Radiated emissions			
33	CISRP 25	Conducted emissions			
34	ISO 11452-2	Radiated immunity			
35	ISO 11452-4	Bulk current injection			

Test No.	Test Standards	Test Items
Climatic loa	ds	
36	VW 80000	K-01 High-/low-temperature aging
37	VW 80000	K-02 Incremental temperature test
38	VW 80000	K-03 Low-temperature operation
39	VW 80000	K-05 Thermal shock (component).
40	VW 80000	K-14 Damp heat, constant
41	VW 80000	L-02 Service life test - high-temperature durability testing
42	VW 80000	L-03 Service life test – Temperature cycle durability testing
43	IEC 60068-2-30	Dew test
44	GB/T 2423.34	Composite temeperature & humidity cyclic test
Mechanical	loads	
45	VW 80000	M-01 Free fall
46	VW 80000	M-04 Vibration test
47	VW 80000	M-05 Mechanical shock
48	VW 80000	M-08 Protection against foreign bodies - IP0x to IP4x, A, B, C, D
Regulation \	/alidation	
49	GB/T 30512-2014	Requirements for prohibited substances on automobiles
50	UL-94:2016	Vertical Burning Test

7、Communication

7.1 CAN Protocol

CB600F8536A applies CAN2.0 A/B communication protocol and communicates through data frame. The data length of message frame is between 1-8 bytes. The default CAN speed is 500Kbps. 1Mbps/250Kbps are also available. There are two kinds of data frame, standard frame and extended frame, as shown in Figure 7-1 and Figure 7-2. Standard frame has an ID of 11 bytes, and the extended frame has an ID of 29 bytes. The defaulted data frame is standard frame, which can be adjusted to the extended frame. The defaulted data format is Motorola, which can be adjusted to Intel.

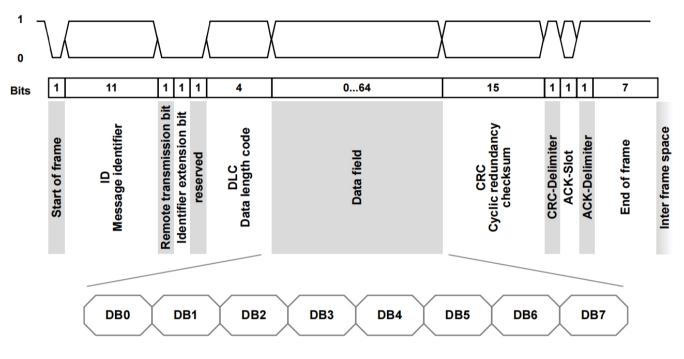


Figure 7-1 S tandard Frame

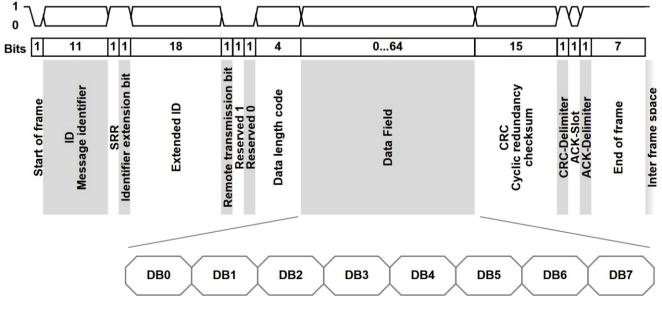


Figure 7-2 Extended Frame

7.2 Data Frame

The data frame of CB600F8536A can apply multiple data formats, as shown in Table 7-1. Among them, both formats A and B are composed of two frames of messages, which transmit real-time current and real-time temperature. Both formats C and D are composed of one frame of message. Format C transmits real-time current and real-time temperature in one frame of message. Format D only transmits real-time current. The data frame format defaults to format A.

Data Format Type	Data Format Type Data Frame Content C.		Data Length	Characteristics
		32-bit current value is a signed integer. Available Unit: mA/μA		
Real-Time Temperature 0x0325 6 32-bit temperature value is a signed in the second			32-bit temperature value is a signed integer, in 0.1°C	
Real-Time Current 0x03C2		8	24-bit current value is an unsigned integer with offset 0x800000, in mA	
Formatb	Real-Time Temperature	0x06C2	8	8-bit NTC temperature value is a signed short integer, in °C 8-bit MCU temperature value is a signed short integer, in °C
Format C Real-Time Current & 0x03C2 8 0x800000, in mA		16-bit temperature value is a signed short integer.		
Format D	Real-Time Current	0x03C0	8	32-bit current value is an unsigned integer with offset 0x80000000, in mA

Table 7-1.	Message	Frame	Data	Format
100101 21	message	. rame	Putu	· •·····

 $\label{eq:commands} [1] The CAN \ ID in the above table are default and can be modified by commands (refer to the relevant application documents for details)$

7.2.1 Format A

Format A consists of current data frame and temperature data frame, each with a 4-bit cyclic counter and a 2-bit module exception flag. In addition, the current data frame has an 8-bit current channel flag, a 32-bit current value, a 1-bit unit selection and a 1-bit reserved bit. The temperature data frame has an 8-bit temperature channel flag, a 32-bit temperature value and a 2-bit reserved bit. The details of the message are shown in Table 7-2, Examples of message and decoding information are shown in Table 7-3 and Table 7-4.

Table 7-2. Format A Message

Frame Type	CANID	Length	byte0	byte1	byte2	byte3	byte4	byte5
Current (mA/µA)	0x0301	6	0x00 ^[1]	B[7]: Reserved Bit ^[2] B[6]: Current Unit ^[3] B[5]: Measurement Error Flag ^[4] B[4]: Overcurrent Flag ^[5] B[3:0]: Cyclic Counter ^[6]	32-bit Signed Current Value ^[7]		1	
Temperature (0.1°C)	0x0325	6	0x04 ^[8]	B[7:6]: Reserved Bit ^[2] 32-bitB[5]: Overtemperature Flag of Shunt ^[9] 32-bitB[4]:Overtemperature Flag of PCBA100B[3:0]: Cyclic Counter ^[6] Temperat		32-bit S nperatu		e ^[11]

[1] Current Channel Flag.

[2] Reserved bit, default is 0.

[3] Current Unit, 0: mA; 1: μA

[4] Measurement error flag, active when the ADC fault is detected, indicates that the current value is invalid. When alarming, the current sensor still sends and receives data messages, but the current value in the message is invalid. The measurement deviation may exceed the range specified in the technical specification.

[5] Overcurrent error flag. Default is inactive. It can be defined by the user.

[6] Cyclic Counter, 0x0-0xF cycle count value.

[7] 32-bit current data uses big-endian by default. The high bit is followed by the low bit. It is a signed integer.

[8] Temperature Channel Flag.

[9] Overtemperature Flag of Shunt, active when the shunt temperature is detected to be more than 150 °C, indicates that the sensor may have no message output or low accuracy. When alarming, the current sensor can still send and receive data messages in a short time, and the current value in the message is valid. If overtemperature for a long time, the performance of current sensor can be damaged. At this time, it is recommended to limit the output power of BMS.

[10] Overtemperature Flag of PCBA, active when the board temperature is detected to be more than 125 °C, indicates that the sensor may have no message output or low accuracy. When alarming, the current sensor can still send and receive data messages in a short time, and the current value in the message is valid. If overtemperature lasts for a long time, the performance of current sensor can be damaged. Then, it is recommended to limit the output power of BMS.

[11] 32-bit temperature data uses big-endian by default. The high bit is followed by the low bit. It is a signed integer. Unit: 0.1 $^\circ$ C

Example	D B 0	DB1	DB2	D B 3	DB4	D B 5	
1	0x00	0x00	0x00	0x00	0x03	0xE8	
2	0×00	0x00	0xFF	0xFF	0xFC	0x18	
3	0x04	0x00	0x00	0x00	0x01	0x0A	
4	0x04	0×00	0xFF	0xFF	0xFE	0xF6	

Table 7-3. Examples of Format A Message Frame

Table 7-4. Decoding Information of Table 7-3 Examples

Example	Byte	Value	Message
	D B0	0x00	Current Channel Flag.
1	1 DB1 0x00 DB2-DB5 0x00003E8		Reserved bit 0, unit: mA, no measurement error, cycle sequence 0
			Current: 1000mA, i.e. 1A
	D B0	0x00	Current Channel Flag.
2	2 DB1 0x00 DB2-DB5 0xFFFFC18		Reserved bit 0, unit: mA, no measurement error, cycle sequence 0
			Current: -1000mA, i.e1A
	D B0	0x04	Temperature Channel Flag.
3	DB1	0x00	Reserved bit 0, Shunt temperature $<$ 150 °C, PCBA temperature $<$ 125 °C, cycle sequence 0
	D B2 - D B5	0x0000010A	The Temperature is + 26.6 °C
	D B0	0x04	Temperature Channel Flag.
4	4 DB1 0x00 F DB2-DB5 0xFFFFEF6		Reserved bit 0, Shunt temperature $<$ 150 °C, PCBA temperature $<$ 125 °C, cycle sequence 0
			The Temperature is - 26.6 °C

7.2.2 Format B

Format B consists of current data frame and temperature data frame, each with a 4-bit cyclic counter. In addition, the current data frame has a 24-bit current value, a 2-bit flag bit, an 8-bit software version, an 8-bit check bit and an 18-bit reserved bit. The temperature data frame has an 8-bit temperature value, a 4-bit status bit, an 8-bit check bit and a 32-bit reserved bit. The details of the message are shown in Table 7-5, Examples of message and decoding information are shown in Table 7-6 and Table 7-7.

Frame Type	CANID	Length	byte0	byte1	byte2	byte3	byte4	byte5	byte6	byte7
Current (mA)	0x03C2	8	B[7:4]: Cyclic Counter ^[1] B[3:2]:Reserved Bit ^[2] B[1]: Hardware Fault Flag ^[3] B[0]:ADC Conversion Error ^[4]	24-bit Unsigned Current Value Offset 0x800000 ⁽⁵⁾		Reserved Bit ^[2]		Software Version	CRC-8Check SAEJ1850 ⁽⁶⁾	
Temperature (°C)	0x06C2	8	B[7:4]: Cyclic Counter ^[1] B[3]:SHUNT Over Temperature Flag ^[7] B[2]:PCBA Over Temperature Flag ^[8] B[1]:SHUNT Temperature measurement Error Flag. ^[9] B[0]:PCBA Temperature measurement Error Flag ^[10]	SHUNT (°C)	PCBA (°C) [12]		Reserv	ed Bit ^[2]		CRC-8Check SAEJ1850 ^[6]

Table 7-5. Format B Message

CB600F8536A

CB_AMC_UM - SEPTEMBER 2023

[1] Cyclic Counter, 0x0-0xF cycle count value.

[2] Reserved bit, default is 0.

[3] Hardware Fault Flag, active when a hardware fault is detected, indicates that the ADC may have a fault.

[4] ADC conversion error flag. When ADC sampling timeout exceeded, indicating the present current value is invalid. When flag occurs,

the sensor can still receive and send message, but the current value of the message is invalid. The measured value may be out of the specifications range.

[5] 24-bit current data uses big-endian by default. The high bit is followed by the low bit. It is an unflaged integer. Unit: mA

The actual value is expressed as V=D-0x800000. D is the value in the message.

[6] CRC-8 Check generates a check code for the first 7 bytes of data.

[7] SHUNT over temperature flag. When measured temperature of SHUNT is over 150°C, it will be no message or measurement accuracy decreased.

 $When flag \, occurs, the \, sensor \, can \, still \, receive \, and \, send \, message \, in \, a \, short \, period \, and \, the \, current \, value \, in \, the \, message \, is \, normal.$

If the sensor is over temperature for a long time, it could affect the functions of the sensor. It is recommended to derate BMS output power.

 $[8] \ {\tt PCBA} \ over \ temperature \ flag. \ {\tt When \ measured \ temperature \ of \ {\tt PCBA} \ is \ over \ 125 ^\circ {\tt C}, \ it \ will \ be \ no \ measurement \ accuracy \ decreased. \ and \$

When flag occurs, the sensor can still receive and send message in a short period and the current value in the message is normal.

If the sensor is over temperature for a long time, it could affect the functions of the sensor. It is recommended to derate BMS output power.

[9] SHUNT temperature measurement error flag. Sign sets when SHUNT temperature measurement is error.

 $\label{eq:constraint} [10] \, {\sf PCBA} \, {\sf temperature} \, {\sf measurement} \, {\sf error} \, {\sf flag}. \, {\sf Sign} \, {\sf sets} \, {\sf when} \, {\sf SHUNT} \, {\sf temperature} \, {\sf measurement} \, {\sf is} \, {\sf error}.$

[11] SHUNT temperature, 8-bit temperature data by default unflaged integers. Unit: °C. The actual value expression is V=D-55. D is the value in the message. [12] PCBA temperature, 8-bit temperature data by default unflaged integers. Unit: °C. The actual value expression is V=D-55. D is the value in the message.

				-				
Example	D B 0	DB1	DB2	DB3	DB4	DB5	DB6	DB7
1	0x00	0x80	0x03	0xE8	0x00	0x00	0x64	0x83
2	0x00	0x7F	0xFC	0x18	0x00	0x00	0x64	0xAB
3	0x00	0x1A	0x1A	0x00	0x00	0x00	0x00	0xD5
4	0x00	0xE6	0xE6	0x00	0x00	0x00	0x00	0x47

Table 7-6. Examples of Format B Message Frame

Table 7-7. Decoding Information of Table 7-6 Examples

Example	Byte	Value	Message
	DB0	0x00	Cycle sequence 0, reserved bit 0, no hardware fault, No ADC conversion error
	DB1-DB3	0x8003E8	Current: 1000mA, i.e. + 1A
1	DB4-DB5	0x0000	Reserved bit 0
	DB6	0x64	Software version is V 1.00
	DB7	0x83	CRC-8CheckValue
	DB0	0x00	Cycle sequence 0, reserved bit 0, no hardware fault, No ADC conversion error
	DB1-DB3	0x7FFC18	Current: -1000mA, i.e1A
2	DB4-DB5	0x0000	Reserved bit 0
	DB6		Software version is V 1.00
	DB7	0xAB	CRC-8CheckValue
	DB0	0x00	Cycle sequence 0, normal SHUNT & PCBA temperature,normal SHUNT、PCBA temperature
	DB1	0x1A	SHUNT :+ 26°C
3	DB2	0x1A	PCBA : + 26°C
	DB3-DB6	0x00000000	Reserved bit 0
	DB7	0xD5	CRC-8CheckValue
	DB0	0x00	Cycle sequence 0, normal SHUNT & PCBA temperature,normal SHUNT、PCBA temperature
	DB1	0xE6	SHUNT :-26°C
4	DB2	0xE6	PCBA : -26°C
	DB3-DB6	0x00000000	Reserved bit 0
	DB7	0x47	CRC-8 Check Value

7.2.3 Format C

Format C consists of one frame of message, including a 24-bit current value, an 16-bit temperature value, a 4-bit cyclic counter, a 2-bit status bit, a 1-bit flag bit, an 8-bit check bit and a 9-bit reserved bit. The details of the message are shown in Table 7-8, Examples of message and decoding information are shown in Table 7-9 and Table 7-10.

Table 7-8. Format C Message

Frame Type	CANID	Length	byte0	byte1	byte2	byte3	byte4	byte5	byte6	byte7
Current (mA) Temperature (0.1°C)	0x03C2	8	B[7:4]: Cyclic Counter ^[1] B[3:2]: Malfunction Status ^[2] B[1]: Hardware Fault Flag ^[3] B[0]:Reserved Bit ^[4]	Curre	bit Unsign nt Value x800000	Offset	16-bit S Tempe Valı	rature	Reserved Bit ^[4]	CRC-8Check SAE J1850 ^[7]

[1] Cyclic Counter, 0x0-0xF cycle count value.

[2] Malfunction Status, '0': Normal; '1': ADC Conversion Error; '2': Current exceeds 1550A; '3': Shunt temperature exceeds 150 °C or PC BA temperature exceeds 125 °C.

[3] Hardware Fault Flag, active when a hardware fault is detected, indicates that the ADC may have a fault.

[4] Reserved bit, default is 0.

5] 24-bit current data uses big-endian by default. The high bit is followed by the low bit. It is an unsigned integer. Unit: mA

The actual value is expressed as V=D-0x800000. D is the value in the message.

[6] 16-bit temperature data uses big-endian by default. The high bit is followed by the low bit. It is a signed integer. Unit: °C.

[7] CRC-8 Check generates a check code for the first 7 bytes of data.

	Table 7-9. Examples of Format C Message Frame										
Example	ExampleDB0DB1DB2DB3DB4DB5DB6DB7										
1	0x00	0x80	0x03	0xE8	0x01	0x0A	0x00	0x2E			
2	0x00	0x7F	0xFC	0x18	0xFE	0xF6	0x00	0x9D			

Table 7-10. Decoding Information of Table 7-9 Examples

Example	Byte	Value	Message
	DB0 0x00		Cycle sequence 0, normal function, no hardware fault, reserved bit 0
	DB1-DB3	0x8003E8	Current: 1000mA, i.e. + 1A
1	D B4 - D B5	0x010A	The Temperature is + 26.6 °C
	DB6	0x00	Reserved bit 0
ľ	DB7	0x2E	CRC-8CheckValue
	D B0	0x00	Cycle sequence 0, normal function, no hardware fault, reserved bit 0
	DB1-DB3	0x7FFC18	Current: -1000mA, i.e1A
2	D B4-D B5	0xFEF6	The Temperature is - 26.6 °C
	DB6	0x00	Reserved bit 0
	DB7	0x9D	CRC-8CheckValue

7.2.4 Format D

Format D consists of one frame of message, including a 32-bit current value, a 1-bit flag bit, a 7-bit status bit, an 8-bit software version, a 16-bit reserved byte and no temperature value. The details of the message are shown in Table 7-11, Examples of message and decoding information are shown in Table 7-12 and Table 7-13.

Table 7-11	. Format D	Message
------------	------------	---------

Frame T	уре	CANID	Length	byte0	byte1	byte2	byte3	byte4	byte5	byte6	byte7
Curre (mA		0x03C0	8		2-bit Uns Current fset 0 x 80	0		B[0]:Error Flag ^[2] B[7:1]: Error Status ^[3]	Rese Bit	rved	Software Version

[1] 32-bit current data uses big-endian by default. The high bit is followed by the low bit. It is an unsigned integer. Unit: mA. The actual value is expressed as V=D-0x80000000. D is the value in the message.

[2] Error Flag, '0': Normal; '1': Error;

[3] Error Status, 0x64: no error; 0x50: ADC hardware error; 0x51: ADC conversion error; 0x60: Temperature exceeds the limit (current value remains measured).

[4] Reserved bit, default is 0.

Table 7-12. Examples of Format D Message Frame

Example	D B 0	DB1	DB2	DB3	DB4	DB5	DB6	DB7
1	0x080	0x00	0x03	0xE8	0xC8	0x00	0x00	0x64
2	0x7F	0xFF	0xFC	0x18	0xC8	0x00	0x00	0x64

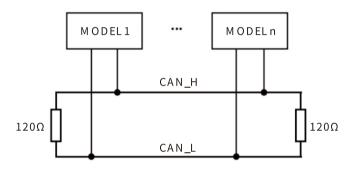
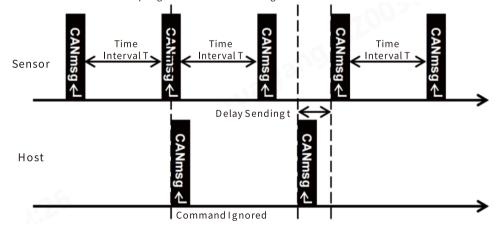
Copyright @ Shenzhen C & B Electronics Co., Ltd

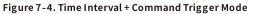
Table 7-13. Decoding Information of Table 7-12 Examples

Example	Byte	Value	Message
	D B0- D B3	0x800003E8	Current: 1000mA, i.e. 1A
1	DB4	0xC8	N ormal, n o e rror
T	D B5 - D B6	0x0000	Reserved bit 0
	DB7	0x64	Software version is V 1.00
	D B0- D B3	0x7FFFFC18	Current: - 1000mA, i.e 1A
2	DB4	0xC8	N ormal, n o e rror
2	D B5 - D B6	0x0000	Reserved byte 0
	DB7	0x64	Software version is V 1.00

7.3 Bus Topology

CB600F8536A can be applied to a bus-type topology and transmits network information to each node through the bus, as shown in Figure 7-3.

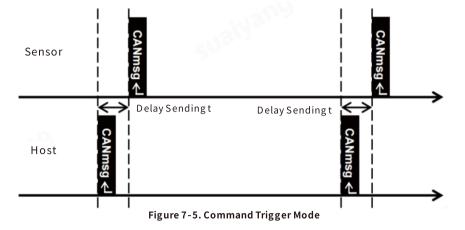




Figure 7-3 CAN Bus Topology

7.4 Measuring Mode

7.4.1 Time Interval + Command Trigger Mode

The sensor samples data at a fixed time interval set by the system and sends message to the CAN bus. At the same time, It can also respond to the trigger command. In the sampling period, the measurement will be active immediately when the trigger command is received and sends message to CAN bus. No need to wait for next sampling interval. As shown in Figure 7-4.



After the sensor receives the trigger command, if it is sampling or sending CAN message, the p resent trigger command will be ignored. When the command is valid, a sampling and sending process will be started, and the time interval T for the next sending will be automatically calculated from the moment of this trigger. As Figure 7 - 4 shown, there is a delay between the sensor receiving a valid trigger command and sending the CAN message, which is less than 1 ms.

7.4.2 Command Triggered Mode

Under this mode, the sensor will not automatically send message, but keep sampling, calculating and filtering data at a fixed time interval. The sensor will send the recent sampling data to CAN bus and reset the start of time interval when a valid command is received from the host, as Figure 7 - 5 shown.

As Figure 7 - 5 shown, the sensor sends data to the CAN bus after receiving at rigger command from the host, with a delay of less that 1 ms between receiving the command and sending the data.

CB_AMC_UM - SEPTEMBER 2023

8、Mechanical Structure

8.1 Dimensions

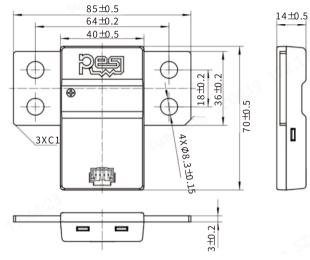


Figure 8.1 Structure Diagram

8.2 Copper Bar Connection

- Recommended Bolts: M8
- Recommended Torque:15- 20Nm
- Recommended Width * Thickness of Copper Bar:40mm*3mm
- Recommended Length of Overlap between Shunt and Copper Bar:20mm
- Do not use a flat washer between the copper bar and the shunt
- Keep the surface of shunt and copper bar clean and free of scratches

Figure 8-2. CB600F8536A Copper Bar Connection Diagram

8.3 Connector

Connector	Manufacturer	Pin Count	Part #
Male Connector ^[1]	Molex	4	5600200420
Recommended Female Connector ^[2]	Molex	4	5601230400

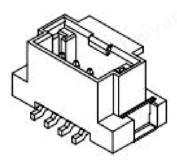


Figure 8-3. Male Connector

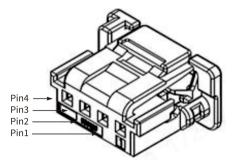


Figure 8-4. Female Connector (Wire end reference)

[1] For more information about male connector, please refer to Molex datasheet: https://www.molex.com/pdm_docs/sd/5600200420_sd.pdf [2] For more information about female connector, please refer to Molex datasheet : https://www.molex.com/pdm_docs/sd/5601230400_sd.pdf

8.4 Connector Definition

Pin No.	Description
Pin4	VCC
Pin3	CAN_L
Pin2	CAN_H
Pin1	GND

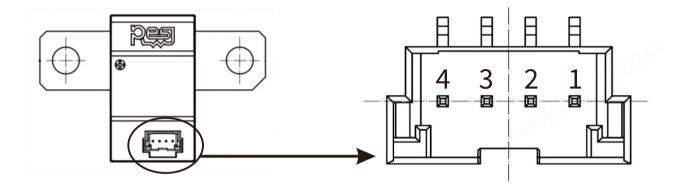


Figure 8-5. Male Connector Molex5600200420

9、Typical Applications

CB600F8536A^[1] is used for accurate current measurement in key system. It is recommended that the current sensor connects to the circuit of positive or negative electrode of high-voltage end^[2], as shown in Figure 9-1 and Figure 9-2, to sample the current in the main circuit. The high and low voltage ends are galvanic isolated inside the sensor. It is recommended that the low voltage end connects to the battery management system, as shown in Figure 9-3, for real-time and accurate reporting of current data in key system.

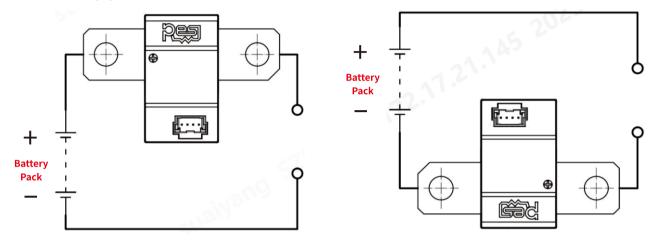


Figure 9-1. Recommended Use of Positive Electrode of High-Voltage End Figure 9-2. Recommended Use of Negative Electrode of High-Voltage End

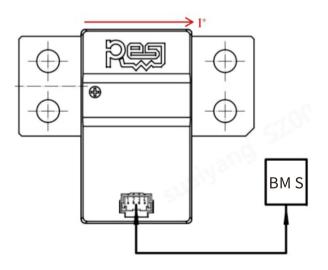


Figure 9-3. Recommended Use of Low-Voltage End

 [1] The "+" on the CB600F8536A current sensor housing is the direction of current entry, that is, the positive current direction.
 [2] The high voltage electrode is installed as shown in the figure. The operating condition indicated by the sensor output value is: When the sensor outputs positive value, the battery pack is discharging; When the sensor outputs negative value, the battery pack is charging.

10、Storage & Packaging

10.1 Storage

- Recommended storage at room temperature.
- The storage environment shall be clean, tidy, dry and free of harmful gases, and the packaging case shall be protected from direct sunlight.
- Anti-static bracelet or anti-static gloves shall be worn during installation, storage and handling.

10.2 Packaging

10.2.1 General Information

Packaging Element	Specifications		
SN P ^[1]	150		
Container Name	Carton		
Container Size	480*410*282	mm	
Unit Weight of Finished Product	ght of Finished Product 100 ±5		

[1] SNP, Standard Number of Package

10.2.2 Auxiliary Materials Information

N o.	Materials	Size L*W *H(mm)	Quantity
1	50-Grid EPE Tray	468*398*86	3
2	EPE Tray Cover	460*390*10	1
3	Anti-Static PE Bag	200*150	150
4	Anti-Static PE Accordion Bag	900*510	1

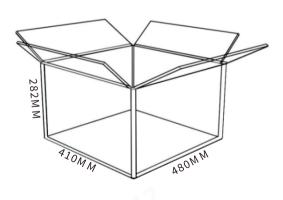


Figure 10-1. Carton Diagram

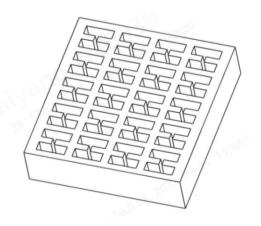


Figure 10-2. Structure Diagram of EPE

11、Part Number Information

	СВ	600	F	8536	A	1	S	S	NN
Series									
CB: C& B Current Sensor									
Rated Current									
350: 350A 600: 600A 1000: 1000A									
Tolerance									
B: 0.05% F: 0.1% L: 0.2% M: 0.5% K: 1%									
Shunt Size									
6918:69mm×18mm 8518:85mm×18mm 8436:84mm×36mm 8536:85mm×36mm									
Application Grade									
A: CAN Automotive I: CAN Industrial T: 485 Industrial									
Туре									
0: Standard, Thickness 4mm 1: Standard, Thickness 3mm 2: C ustomized									
Special Byte									
Standard K:25μΩ S:50μΩ P:100μΩ J:150μΩ									
Customized Custom Byte, 0~9, A~Z									
Special Byte									
Standard S:CAN Terminal Resistor N:No CAN Terminal Resistor									
Customized Custom Byte , 0 ~ 9, A ~ Z									
Code									

For more performance options and other relevant information, please refer to the official website: https://en.resistor.today/

CB1000F8436A Series, Automotive, 0.1% Tolerance Operating Temperature -40°C~+105°C Shunt Based Current Sensor

1、Characteristics

- Current Sensing: Measurement Range: -22400A~+22400A - Continuous Operating Range: -1000A~+1000A
- Measurement Accuracy: ±0.1% (MAX)
- Resolution: 1mA
- Temperature Sensing: Measurement Range: -50°C~+150°C
- Measurement Error: $\pm 3^\circ C$
- Resolution: 0.1°C
- Communication Protocol:CAN2.0 A/B
- Selectable Data Format
- Configurable CAN ID
- Configurable CAN Speed: 250Kbps~1Mbps
- Supply Voltage:6V~18V
- Operating Temperature Range: -40°C~+105°C
- Power Consumption: ≤384mW @12VDC
- Galvanic Isolation: 3000VAC

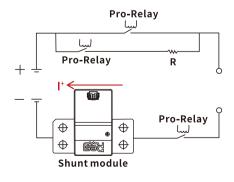
2、Applications

- Automotive Current Monitor
- Grid Energy Storage
- UPS
- Charging Station

3、Introduction

CB1000F8436A current sensor is an automotive current sensing module, which can be used to measure bidirectional DC current. Featuring high accuracy, low power consumption, wide operating temperature range, excellent response speed, temperature stability and anti-interference ability.

The sensor is designed based on low-TCR shunt, adopts highprecision ADC, communicates through CAN2.0 A/B protocol, and has large ranges of current and temperature measurement capabilities, and current compensation at whole temperature range.


The sensor meets the operating temperature range of -40°C~+105°C, can apply to the continuous operating current of -1000A~+1000A at the whole temperature range, and the current measurement accuracy is no more than \pm 0.1% in the range of +50A~+1000A or -1000A~-50A.

Power supply of CB1000F8436A current sensor is from 6VDC to 18VDC. Its power consumption is controlled below 384mW (12VDC), and it can realize complete high-low voltage isolation, which can be applied to the main positive electrode or the main negative electrode of the battery system.

Sensor Information

Part Number	Shunt Thickness	Resistance	Terminal Resistor
CB1000F8436A0KS00	4mm	25μΩ	Yes
CB1000F8436A0KN00	4mm	25μΩ	No

[1] For part numbers not included in the table, please contact us for technical support.

Typical Application

This datasheet provides CB1000F8436A current sensor reliability data and design suggestions. For the latest information of the datasheet and more RESI products, please visit www.resistor.today. Before actual design, please refer to the latest version of CB1000F8436A current sensor datasheet.

Content

1. Characteristics 01
2. Applications 01
3.Introduction 01
4. Revision
5. Specifications 03
5.1 Limit Parameters 03
5.2 General Parameters 03
6. Test Standards05
7.Communication07
7.1 CAN Protocol07
7.2 Data Frame08
7.3 Bus Topology 12

7.4 Measuring Mode	 12
8、Mechanical Structure	 14
8.1 Dimensions	 14
8.2 Copper Bar Connection	 14
8.3 Connector	 14
8.4 Connector Definition	 15
9、Typical Applications	 16
10、Storage & Packaging	 17
10.1 Storage	 17
10.2 Packaging	 17
11、Part Number Information	 18

4、Revision

Date	Revised Content	Note
2023.05.12	/	A0

5、Specifications

5.1 Limit Parameters

Note: Product will affect its reliability and cause unexpected permanent damage if operating under limit parameters for long time.

Parameter	Condition	Min.	Typical	Мах	Unit
Supply Voltage				30	VDC
	±1100A			60	s
	±1500A			40	s
Current	±2500A			15	s
Measurement Range	±3000A			10	s
	±22400A			50	ms
CAN Interface	Configured 120 Ω Terminal Resistor (Continuous Power Supply)			6	V
CAN IIItenace	ESD			8	KV
Operating Temperature		-40		105	°C
Storage Temperature		-40		125	°C
Humidity				95	%RH

5.2 General Parameters

Test Conditions: Ambient Temperature 25 °C (Unless Otherwise Noted)

Parameter	Condition	Min.	Typical	Max.	Unit
Power Supply					
Supply Voltage		6	12	18	VDC
	6V	20	26	32	mA
Operating Current	12V	20	26	32	mA
	18V	20	26	32	mA
	6V	120	150	192	mW
Power Consumption	12V	240	300	384	mW
	18V	360	450	576	mW
Start- Up Time	Required time from power-on to s ending t he first frame valid message			150	ms
Current Measurement (- 40	°C~+105°C)				
	- 50A ~ + 50A		±30	±50	mA
A	+50A ~ +1000A or -1000A ~ -50A			±0.1	%
Accuracy	+1000A ~ +3000A or -3000A ~ -1000A		±0.5	±1	%
	+3000A ~ +22400A or -22400A ~ -3000A		±1	±5	%
	-1000A ~ +1000A		Continuous		
	±1500A			30	s
Duration	±3000A			5	s
	±22400A			40	ms
	-1000A~ +1000A		1		mA
Resolution	>1000A or<- 1000A		10		mA
Lincovity	- 1000A~ + 1000A		±0.01		%
Linearity	>1000A or<- 1000A		±0.1		%

CB1000F8436A

CB_AMC_UM - MAY 2023

Test Conditions: Ambient Temperature 25 °C (Unless Otherwise Noted)

Parameter	Condition	Min.	Typical	Max.	Unit
Temperature Measurement					
Measurement Range		-50		150	°C
Measurement Error	- 50°C~ + 150°C	-3		3	°C
Resolution			0.1		°C
Power & Temperature Rise					
DC I mpedance		23.75	25	26.25	μΩ
Inductance				3	nH
Communication		,			
Protocol	CAN 2.0 A /B				
Communication Speed		250	500	1000	Kbps
Tourning! Desister	With Terminal Resistor	108	120	132	Ω
Terminal Resistor	Without Terminal Resistor				
Output Rate of Current Message		10	10	1000	ms
Output Rate of Temperature Message		10	100	1000	ms
Isolation		·			
Galvanic Isolation			3000		VAC
Creepage Distance			6		mm
Clearance			4.5		mm

6、Test Standards

Test No.	Test Standards	Test Items
General inspe	ction	
1	/	Appearance
2	/	Dimension
3	/	Weight
4	/	Function Check
Electrical load	ls	•
5	VW 80000	E-01 Long-term overvoltage
6	VW 80000	E-02 Transient overvoltage
7	VW 80000	E-03 Transient undervoltage
8	VW 80000	E-04 Jump start
9	VW 80000	E-05 Load dump
10	VW 80000	E-06 Ripple voltage
11	VW 80000	E-07 Slow decrease and increase of the supply voltage
12	VW 80000	E-08 Slow decrease, quick increase of the supply voltage
13	VW 80000	E-09 Reset behavior
14	VW 80000	E-10 Brief interruptions
15	VW 80000	E-11 Start pulses
16	VW 80000	E-12 Voltage curve with vehicle electrical system control
17	VW 80000	E-13 Pin interruption
18	VW 80000	E-14 Connector interruption
19	VW 80000	E-15 Reverse polarity
20	VW 80000	E-16 Ground potential difference
21	VW 80000	E-17 Short circuit in signal cable and load circuits
22	VW 80000	E-18 Insulation resistance
23	VW 80000	E-19 Quiescent current
24	VW 80000	E-20 Dielectric strength
25	/	Continuous power test
26	ISO 7637-2:2011	CI pulse 1
27	ISO 7637-2:2011	CI pulse 2a / 2b
28	ISO 7637-2:2011	CI pulse 3a / 3b
29	ISO 7637-2:2011	CI pulse 4
30	ISO 7637-2:2011	CI pulse 5b
31	ISO 10605:2008	ESD
32	CISRP 25	Radiated emissions
33	CISRP 25	Conducted emissions
34	ISO 11452-2	Radiated immunity
35	ISO 11452-4	Bulk current injection

CB1000F8436A

CB_AMC_UM - MAY 2023

Test No.	Test Standards	Test Items
Climatic loa	ds	
36	36 VW 80000 K-01 High-/low-temperature aging	
37	VW 80000	K-02 Incremental temperature test
38	VW 80000	K-03 Low-temperature operation
39	VW 80000	K-05 Thermal shock (component).
40	VW 80000	K-14 Damp heat, constant
41	VW 80000	L-02 Service life test - high-temperature durability testing
42	VW 80000	L-03 Service life test – Temperature cycle durability testing
43	IEC 60068-2-30	Dew test
44	GB/T 2423.34	Composite temeperature & humidity cyclic test
Mechanical	loads	
45	VW 80000	M-01 Free fall
46	VW 80000	M-04 Vibration test
47	VW 80000	M-05 Mechanical shock
48	VW 80000	M-08 Protection against foreign bodies - IP0x to IP4x, A, B, C, D
Regulation \	/alidation	
49	GB/T 30512-2014	Requirements for prohibited substances on automobiles
50	UL-94:2016	Vertical Burning Test

7、Communication

7.1 CAN Protocol

CB1000F8436A applies CAN2.0 A/B communication protocol and communicates through data frame. The data length of message frame is between 1-8 bytes. The default CAN speed is 500Kbps. 1Mbps/250Kbps are also available. There are two kinds of data frame, standard frame and extended frame, as shown in Figure 7-1 and Figure 7-2. Standard frame has an ID of 11 bytes, and the extended frame has an ID of 29 bytes. The defaulted data frame is standard frame, which can be adjusted to the extended frame. The defaulted data format is Motorola, which can be adjusted to Intel.

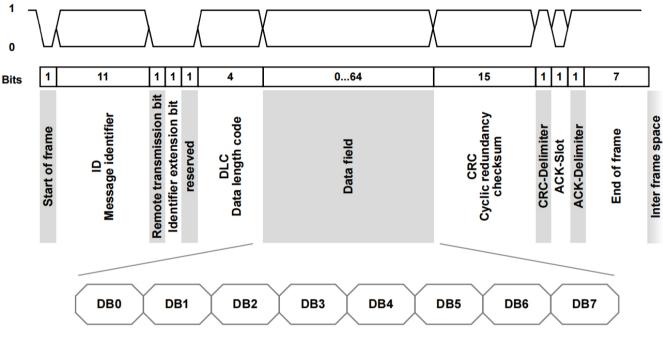


Figure 7-1 S tandard Frame

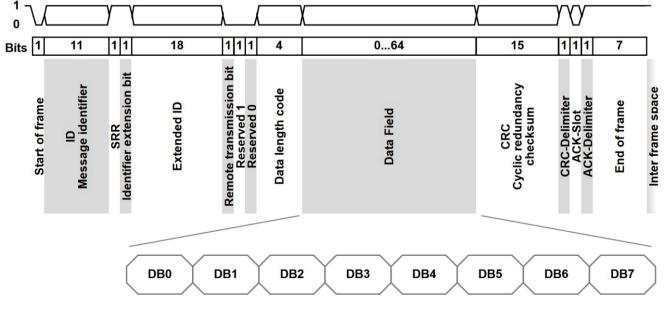


Figure 7-2 Extended Frame

7.2 Data Frame

The data frame of CB1000F8436A can apply multiple data formats, as shown in Table 7-1. Among them, both formats A and B are composed of two frames of messages, which transmit real-time current and real-time temperature. Both formats C and D are composed of one frame of message. Format C transmits real-time current and real-time temperature in one frame of message. Format D only transmits real-time current. The data frame format defaults to format A.

Data Format Type	Data Frame Content	CANID ^[1]	Data Length	Characteristics
Format A	Real-Time Current	0x0301	6	32-bit current value is a signed integer. Available Unit: mA/μA
	Real-Time Temperature	0x0325	6	32-bit temperature value is a signed integer, in 0.1°C
Format B	Real-Time Current	0x03C2	8	24-bit current value is an unsigned integer with offset 0x800000, in mA
FormatB	Real-Time Temperature	0x06C2	8	8-bit NTC temperature value is a signed short integer, in °C 8-bit MCU temperature value is a signed short integer, in °C
Format C	Real-Time Current & Temperature	0x03C2	8	24-bit current value is an unsigned integer with offset 0x800000, in mA 16-bit temperature value is a signed short integer. Unit: 0.1 °C
Format D	Real-Time Current	0x03C0	8	32-bit current value is an unsigned integer with offset 0x80000000, in mA

Table 7-1.	Message Fra	ame Data Format
------------	-------------	-----------------

[1] The CAN ID in the above table are default and can be modified by commands (refer to the relevant application documents for details)

7.2.1 Format A

Format A consists of current data frame and temperature data frame, each with a 4-bit cyclic counter and a 2-bit module exception flag. In addition, the current data frame has an 8-bit current channel flag, a 32-bit current value, a 1-bit unit selection and a 1-bit reserved bit. The temperature data frame has an 8-bit temperature channel flag, a 32-bit temperature value and a 2-bit reserved bit. The details of the message are shown in Table 7-2, Examples of message and decoding information are shown in Table 7-3 and Table 7-4.

Table 7-2. Format A Message

Frame Type	CANID	Length	byte0	byte1		byte3	byte4	byte5
Current (mA/µA)	0x0301	6	0x00 ^[1]	B[7]: Reserved Bit ^[2] B[6]: Current Unit ^[3] B[5]: Measurement Error Flag ^[4] B[4]: Overcurrent Flag ^[5] B[3:0]: Cyclic Counter ^[6]		32-bit S Current]
Temperature (0.1°C)	0x0325	6	0x04 ^[8]	B[7:6]: Reserved Bit ^[2] B[5]: Overtemperature Flag of Shunt ^[9] B[4]:Overtemperature Flag of PCBA ^[10] B[3:0]: Cyclic Counter ^[6]		32-bit S nperatu		e ^[11]

[1] Current Channel Flag.

[2] Reserved bit, default is 0.

[3] Current Unit, 0: mA; 1: μA

[4] Measurement error flag, active when the ADC fault is detected, indicates that the current value is invalid. When alarming, the current sensor still sends and receives data messages, but the current value in the message is invalid. The measurement deviation may exceed the range specified in the technical specification.

[5] Overcurrent error flag. Default is inactive. It can be defined by the user.

[6] Cyclic Counter, 0x0-0xF cycle count value.

[7] 32-bit current data uses big-endian by default. The high bit is followed by the low bit. It is a signed integer.

[8] Temperature Channel Flag.

[9] Overtemperature Flag of Shunt, active when the shunt temperature is detected to be more than 150 °C, indicates that the sensor may have no message output or low accuracy. When alarming, the current sensor can still send and receive data messages in a short time, and the current value in the message is valid. If overtemperature for a long time, the performance of current sensor can be damaged. At this time, it is recommended to limit the output power of BMS.

[10] Overtemperature Flag of PCBA, active when the board temperature is detected to be more than 125 °C, indicates that the sensor may have no message output or low accuracy. When alarming, the current sensor can still send and receive data messages in a short time, and the current value in the message is valid. If overtemperature lasts for a long time, the performance of current sensor can be damaged. Then, it is recommended to limit the output power of BMS.

[11] 32-bit temperature data uses big-endian by default. The high bit is followed by the low bit. It is a signed integer. Unit: 0.1 $^{\circ}$ C

		145101 511		Thessagerrane		
Example	D B O	DB1	DB2	D B 3	DB4	D B 5
1	0x00	0x00	0x00	0x00	0x03	0xE8
2	0x00	0x00	0xFF	0xFF	0xFC	0x18
3	0x04	0x00	0×00	0×00	0x01	0x0A
4	0x04	0x00	0xFF	0xFF	0xFE	0xF6
•		•	•	•		•

Table 7-3. Examples of Format A Message Frame

Table 7-4. Decoding Information of Table 7-3 Examples

Example	Byte	Value	Message
	D B0	0x00	Current Channel Flag.
1	DB1	0x00	Reserved bit 0, unit: mA, no measurement error, cycle sequence 0
	D B2 - D B5	0x000003E8	Current: 1000mA , i.e. 1A
	DB0	0x00	Current Channel Flag.
2	DB1	0x00	Reserved bit 0, unit: mA, no measurement error, cycle sequence 0
	D B2 - D B5	0xFFFFFC18	Current: -1000mA, i.e1A
	D B0	0x04	Temperature Channel Flag.
3	DB1	0x00	Reserved bit 0, Shunt temperature $<$ 150 °C, PCBA temperature $<$ 125 °C, cycle sequence 0
	D B2 - D B5	0x0000010A	The Temperature i s + 26.6 °C
	D B0	0x04	Temperature Channel Flag.
4	DB1	0x00	Reserved bit 0, Shunt temperature $<$ 150 °C, PCBA temperature $<$ 125 °C, cycle sequence 0
	D B2 - D B5	0xFFFFFEF6	The Temperature i s - 26.6 °C

7.2.2 Format B

Format B consists of current data frame and temperature data frame, each with a 4-bit cyclic counter. In addition, the current data frame has a 24-bit current value, a 2-bit flag bit, an 8-bit software version, an 8-bit check bit and an 18-bit reserved bit. The temperature data frame has an 8-bit temperature value, a 4-bit status bit, an 8-bit check bit and a 32-bit reserved bit. The details of the message are shown in Table 7-5, Examples of message and decoding information are shown in Table 7-6 and Table 7-7.

FrameType	CANID	Length	byte0	byte1	byte2	byte3	byte4	byte5	byte6	byte7
Current (mA)	0x03C2	8	B[7:4]: Cyclic Counter ^[1] B[3:2]:Reserved Bit ^[2] B[1]: Hardware Fault Flag ^[3] B[0]:ADC Conversion Error ^[4]	Ci	bit Unsigr urrent Val et 0x8000	ue	Reserve	d Bit ^[2]	Software Version	CRC-8Check SAEJ1850 ^[6]
Temperature (°C)	0x06C2	8	B[7:4]: Cyclic Counter ^[1] B[3]:SHUNT Over Temperature Flag ^[7] B[2]:PCBA Over Temperature Flag ^[8] B[1]:SHUNT Temperature measurement Error Flag. ^[9] B[0]:PCBA Temperature measurement Error Flag ^[10]	SHUNT (°C)	PCBA (°C) [12]		Reserv	ed Bit ^[2]		CRC-8Check SAEJ1850 ^[6]

Table 7-5. Format B Message

CB1000F8436A

CB_AMC_UM - MAY 2023

[1] Cyclic Counter, 0x0-0xF cycle count value.

[2] Reserved bit, default is 0.

[3] Hardware Fault Flag, active when a hardware fault is detected, indicates that the ADC may have a fault.

[4] ADC conversion error flag. When ADC sampling timeout exceeded, indicating the present current value is invalid. When flag occurs,

the sensor can still receive and send message, but the current value of the message is invalid. The measured value may be out of the specifications range.

[5] 24-bit current data uses big-endian by default. The high bit is followed by the low bit. It is an unflaged integer. Unit: mA

The actual value is expressed as V=D-0x800000. D is the value in the message.

[6] CRC-8 Check generates a check code for the first 7 bytes of data.

[7] SHUNT over temperature flag. When measured temperature of SHUNT is over 150°C, it will be no message or measurement accuracy decreased.

 $When flag \, occurs, the \, sensor \, can \, still \, receive \, and \, send \, message \, in \, a \, short \, period \, and \, the \, current \, value \, in \, the \, message \, is \, normal.$

If the sensor is over temperature for a long time, it could affect the functions of the sensor. It is recommended to derate BMS output power.

[8] PCBA over temperature flag. When measured temperature of PCBA is over 125°C, it will be no message or measurement accuracy decreased.

When flag occurs, the sensor can still receive and send message in a short period and the current value in the message is normal.

If the sensor is over temperature for a long time, it could affect the functions of the sensor. It is recommended to derate BMS output power.

[9] SHUNT temperature measurement error flag. Sign sets when SHUNT temperature measurement is error.

 $[10] \, {\sf PCBA} \, temperature \, measurement \, error \, flag. \, Sign \, sets \, when \, {\sf SHUNT} \, temperature \, measurement \, is \, error.$

[11] SHUNT temperature, 8-bit temperature data by default unflaged integers. Unit: °C. The actual value expression is V=D-55. D is the value in the message. [12] PCBA temperature, 8-bit temperature data by default unflaged integers. Unit: °C. The actual value expression is V=D-55. D is the value in the message.

				-				
Example	D B 0	DB1	DB2	D B 3	DB4	DB5	DB6	DB7
1	0x00	0x80	0x03	0xE8	0x00	0x00	0x64	0x83
2	0x00	0x7F	0xFC	0x18	0x00	0x00	0x64	0xAB
3	0x00	0x1A	0x1A	0x00	0x00	0x00	0x00	0xD5
4	0x00	0xE6	0xE6	0x00	0x00	0x00	0x00	0x47

Table 7-6. Examples of Format B Message Frame

Table 7-7. Decoding Information of Table 7-6 Examples

Example	Byte	Value	Message
	DB0	0x00	Cycle sequence 0, reserved bit 0, no hardware fault, No ADC conversion error
	DB1-DB3	0x8003E8	Current: 1000mA , i.e. +1A
1	DB4-DB5	0x0000	Reserved bit 0
	DB6	0x64	Software version is V 1.00
	DB7	0x83	CRC- 8 Check Value
	DB0	0x00	Cycle sequence 0, reserved bit 0, no hardware fault, No ADC conversion error
	DB1-DB3	0x7FFC18	Current: -1000mA, i.e1A
2	DB4-DB5	0x0000	Reserved bit 0
	DB6	0x64	Software version is V 1.00
	DB7	0xAB	CRC- 8 Check Value
	DB0	0x00	Cyclesequence0,normalSHUNT&PCBAtemperature,normalSHUNT,PCBAtemperature
	DB1	0x1A	SHUNT : + 26°C
3	DB2	0x1A	PCBA:+26°C
	DB3-DB6	0x00000000	Reserved bit 0
	DB7	0xD5	CRC- 8 Check Value
	DB0	0x00	Cycle sequence 0, normal SHUNT & PCBA temperature,normal SHUNT、PCBA temperature
	DB1	0xE6	SHUNT : - 26°C
4	DB2	0xE6	PCBA : - 26°C
	DB3-DB6	0x00000000	Reserved bit 0
	DB7	0x47	CRC- 8 Check Value

7.2.3 Format C

Format C consists of one frame of message, including a 24-bit current value, an 16-bit temperature value, a 4-bit cyclic counter, a 2-bit status bit, a 1-bit flag bit, an 8-bit check bit and a 9-bit reserved bit. The details of the message are shown in Table 7-8, Examples of message and decoding information are shown in Table 7-9 and Table 7-10.

Table 7-8. Format C Message

					-					
Frame Type	CANID	Length	byte0	byte1	byte2	byte3	byte4	byte5	byte6	byte7
Current (mA) Temperature (0.1°C)	0x03C2	8	B[7:4]: Cyclic Counter ^[1] B[3:2]: Malfunction Status ^[2] B[1]: Hardware Fault Flag ^[3] B[0]: Reserved Bit ^[4]	Curre	bit Unsigr nt Value (x800000	Offset	16-bit S Tempe Valı	rature	Reserved Bit ^[4]	CRC-8 Check SA E J1850 ^[7]

[1] Cyclic Counter, 0x0-0xF cycle count value.

[2] Malfunction Status, '0': Normal; '1': ADC Conversion Error; '2': Current exceeds 1550A; '3': Shunt temperature exceeds 150 °C or PCBA temperature exceeds 125 °C.

[3] Hardware Fault Flag, active when a hardware fault is detected, indicates that the ADC may have a fault.

[4] Reserved bit, default is 0.

[5] 24-bit current data uses big-endian by default. The high bit is followed by the low bit. It is an unsigned integer. Unit: mA

The actual value is expressed as V=D-0x800000. D is the value in the message.

[6] 16-bit temperature data uses big-endian by default. The high bit is followed by the low bit. It is a signed integer. Unit: °C.

[7] CRC-8 Check generates a check code for the first 7 bytes of data.

	Table 7-9. Examples of Format C Message Frame							
Example	D B 0	DB1	DB2	DB3	DB4	DB5	DB6	DB7
1	0x00	0x80	0x03	0xE8	0x01	0x0A	0x00	0x2E
2	0x00	0x7F	0xFC	0x18	0xFE	0xF6	0x00	0x9D

Table 7-10. Decoding Information of Table 7-9 Examples

Example	Byte	Value	Message
	D B0	0x00	Cycle sequence 0, normal function, no hardware fault, reserved bit 0
	DB1-DB3	0x8003E8	Current: 1000mA , i.e. +1A
1	D B4 - D B5	0x010A	The Temperature i s + 26.6 °C
	DB6	0x00	Reserved bit 0
	DB7	0x2E	CRC- 8 Check Value
	D B0	0x00	Cycle sequence 0, normal function, no hardware fault, reserved bit 0
	DB1-DB3	0x7FFC18	Current: -1000mA, i.e1A
2	D B4-D B5	0xFEF6	The Temperature i s - 26.6 °C
	DB6	0x00	Reserved bit 0
	DB7	0x9D	CRC- 8 Check Value

7.2.4 Format D

Format D consists of one frame of message, including a 32-bit current value, a 1-bit flag bit, a 7-bit status bit, an 8-bit software version, a 16-bit reserved byte and no temperature value. The details of the message are shown in Table 7-11, Examples of message and decoding information are shown in Table 7-12 and Table 7-13.

Table 7-11	. Format D	Message
------------	------------	---------

Frame Type	CANID	Length	byte0	byte1	byte2	byte3	byte4	byte5	byte6	byte7
Current (mA)	0x03C0	8		2-bit Uns Current fset 0 x 80	0		B[0]:Error Flag ^[2] B[7:1]: Error Status ^[3]	Rese Bit		Software Version

[1] 32-bit current data uses big-endian by default. The high bit is followed by the low bit. It is an unsigned integer. Unit: mA. The actual value is expressed as V=D-0x80000000. D is the value in the message.

[2] Error Flag, '0': Normal; '1': Error;

[3] Error Status, 0x64: no error; 0x50: ADC hardware error; 0x51: ADC conversion error; 0x60: Temperature exceeds the limit (current value remains measured).

[4] Reserved bit, default is 0.

Table 7-12. Examples of Format D Message Frame

Example	D B 0	DB1	DB2	D B 3	DB4	DB5	DB6	DB7	
1	0x080	0x00	0x03	0xE8	0xC8	0x00	0x00	0x64	
2	0x7F	0xFF	0xFC	0x18	0xC8	0x00	0x00	0x64	

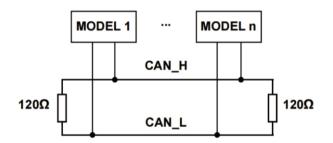
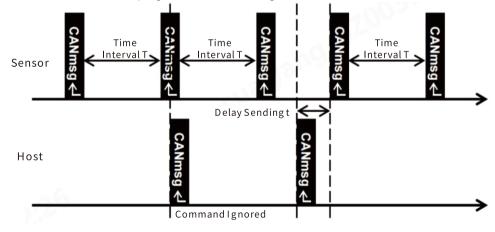
Copyright @ Shenzhen C & B Electronics Co., Ltd

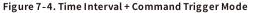
Table 7-13. Decoding Information of Table 7-12 Examples

Example	Byte	Value	Message
	D B0- D B3	0x800003E8	Current: 1000mA, i.e. 1A
1	DB4 0xC8		N ormal, no error
L L	D B5 - D B6	0x0000	Reserved bit 0
	DB7	0x64	Software version is V 1.00
	DB0-DB3 0x7FFFFC18		Current: - 1000mA, i.e 1A
2	DB4 0xC8		N ormal, no e rror
2	DB5-DB6 0x0000		Reserved byte 0
	DB7	0x64	Software version is V 1.00

7.3 Bus Topology

CB1000F8436A can be applied to a bus-type topology and transmits network information to each node through the bus, as shown in Figure 7-3.

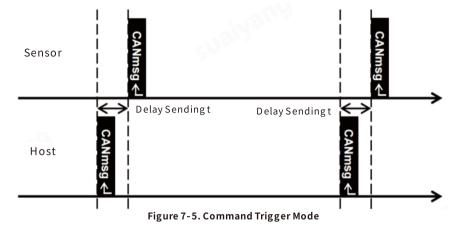




Figure 7-3 CAN Bus Topology

7.4 Measuring Mode

7.4.1 Time Interval + Command Trigger Mode

The sensor samples data at a fixed time interval set by the system and sends message to the CAN bus. At the same time, It can also respond to the trigger command. In the sampling period, the measurement will be active immediately when the trigger command is received and sends message to CAN bus. No need to wait for next sampling interval. As shown in Figure 7-4.



After the sensor receives the trigger command, if it is sampling or sending CAN message, the p resent trigger command will be ignored. When the command is valid, a sampling and sending process will be started, and the time interval T for the next sending will be automatically calculated from the moment of this trigger. As Figure 7 - 4 shown, there is a delay between the sensor receiving a valid trigger command and sending the CAN message, which is less than 1 ms.

7.4.2 Command Triggered Mode

Under this mode, the sensor will not automatically send message, but keep sampling, calculating and filtering data at a fixed time interval. The sensor will send the recent sampling data to CAN bus and reset the start of time interval when a valid command is received from the host, as Figure 7 - 5 shown.

As Figure 7 - 5 shown, the sensor sends data to the CAN bus after receiving at rigger command from the host, with a delay of less that 1 ms between receiving the command and sending the data.

CB1000F8436A

CB_AMC_UM - MAY 2023

8、Mechanical Structure

8.1 Dimensions

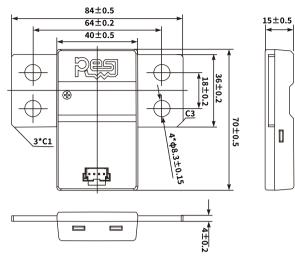


Figure 8.1 Structure Diagram

8.2 Copper Bar Connection

- Recommended Bolts: M8
- Recommended Torque:15- 20Nm
- Recommended Width * Thickness of Copper Bar:40mm*5mm
- Recommended Length of Overlap between Shunt and Copper Bar:20mm
- Do not use a flat washer between the copper bar and the shunt
- Keep the surface of shunt and copper bar clean and free of scratches

Figure 8-2. CB1000F8436A Copper Bar Connection Diagram

8.3 Connector

Connector	Manufacturer	Pin Count	Part #
Male Connector ^[1]	Molex	4	5600200420
Recommended Female Connector ^[2]	Molex	4	5601230400

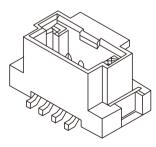


Figure 8-3. Male Connector

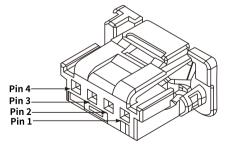


Figure 8-4. Female Connector (Wire end reference)

[1] For more information about male connector, please refer to Molex datasheet: https://www.molex.com/pdm_docs/sd/5600200420_sd.pdf [2] For more information about female connector, please refer to Molex datasheet : https://www.molex.com/pdm_docs/sd/5601230400_sd.pdf

8.4 Connector Definition

Pin N o.	Description
Pin4	VCC
Pin3	CAN_L
Pin2	CAN_H
Pin1	GND

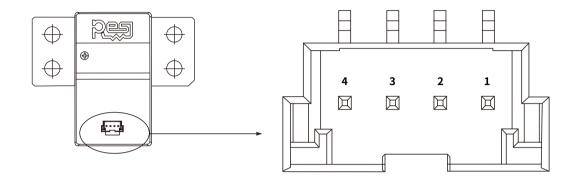


Figure 8-5. Male Connector Molex5600200420

9、Typical Applications

CB1000F8436A^[1] is used for accurate current measurement in key system. It is recommended that the current sensor connects to the circuit of positive or negative electrode of high-voltage end^[2], as shown in Figure 9-1 and Figure 9-2, to sample the current in the main circuit. The high and low voltage ends are galvanic isolated inside the sensor. It is recommended that the low voltage end connects to the battery management system, as shown in Figure 9-3, for real-time and accurate reporting of current data in key system.

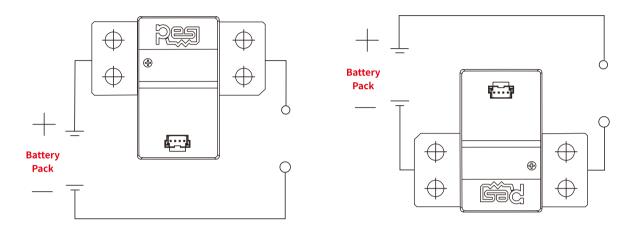


Figure 9-1. Recommended Use of Positive Electrode of High-Voltage End Figure 9-2. Recommended Use of Negative Electrode of High-Voltage End

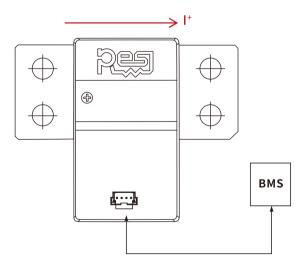


Figure 9-3. Recommended Use of Low-Voltage End

 [1] The "+" on the CB1000F8436A current sensor housing is the direction of current entry, that is, the positive current direction.
 [2] The high voltage electrode is installed as shown in the figure. The operating condition indicated by the sensor output value is: When the sensor outputs positive value, the battery pack is discharging; When the sensor outputs negative value, the battery pack is charging.

10、Storage & Packaging

10.1 Storage

- Recommended storage at room temperature.
- The storage environment shall be clean, tidy, dry and free of harmful gases, and the packaging case shall be protected from direct sunlight.
- Anti-static bracelet or anti-static gloves shall be worn during installation, storage and handling.

10.2 Packaging

10.2.1 General Information

Packaging Element	Specifications				
SN P ^[1]	150				
Container Name	Carton				
Container Size	480*410*282	mm			
Unit Weight of Finished Product	126±5	g			

[1] SNP, Standard Number of Package

10.2.2 Auxiliary Materials Information

N o.	Materials	Size L*W *H(mm)	Quantity
1	50-Grid EPE Tray	50-Grid EPE Tray 468*398*86	
2	EPE Tray Cover	460*390*10	1
3	Anti-Static PE Bag	200*150	150
4	Anti-Static PE Accordion Bag	900*510	1

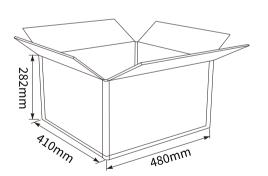


Figure 10-1. Carton Diagram

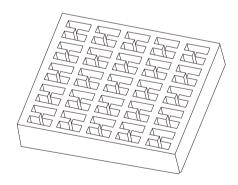


Figure 10-2. Structure Diagram of EPE

CB1000F8436A

CB_AMC_UM - MAY 2023

11、Part Number Information

	СВ	1000	F	8436	Α	0	K	S	NN
Series									
CB: C& B Current Sensor									
Rated Current									
350: 350A 600: 600A 1000: 1000A									
Tolerance									
B: 0.05% F: 0.1% L: 0.2% M: 0.5% K: 1%									
Shunt Size									
6918:69mm×18mm 8518:85mm×18mm 8436:84mm×36mm 8536:85mm×36mm									
Application Grade									
A: CAN Automotive I: CAN Industrial T: 485 Industrial									
Туре									
0: Standard, Thickness 4mm 1: Standard, Thickness 3mm 2: C ustomized									
Special Byte									
Standard Κ:25μΩ S:50μΩ Ρ:100μΩ J:150μΩ									
Customized Custom Byte, 0~9, A~Z									
Special Byte									
Standard S:CAN Terminal Resistor N:No CAN Terminal Resistor									
Customized Custom Byte , 0 ~ 9, A ~ Z									
Code									

For more performance options and other relevant information, please refer to the official website: https://en.resistor.today/

PCBS6918B100P2AC00, Automotive Operation Temperature -40 °C~+125 °C Shunt Based Current Sensing Module

1、Characteristics

- Continuous Operating Range: -350A~+350A
- Connector: Horizontal 4 PIN
- High Accuracy Current Measurement
- Real-Time Temperature Measurement
- Applicable to High Pulse Current
- Low TCR, Low Inductance, Low Thermal EMF
- Excellent Long-Term Stability
- Operating Temperature Range:-40°C~125°C

2、Applications

- BMS Current Measurement
- BDU/PDU Current Measurement

3、Introduction

PCBS6918B100P2AC00 is an automotive current sensing module used to assist in measuring bidirectional DC current. It has high accuracy, low TCR, low inductance, low thermal EMF, and excellent long-term stability and anti-interference ability.

This module is designed based on a low-TCR shunt, which is welded with PCBA and can be installed on the circuit through bolts. It is used to collect bus current and shunt temperature, and send the measured signal to the signal processing side of the user defined module. It can be customized according to the specific technical requirements.

Module Information

Shunt Size	Hole Diameter	Connector		
69mm×18mm	7mm	5023520400		

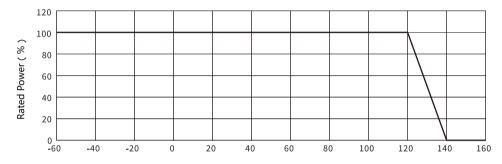
Content

1. Characteristics	01
2. Applications	01
3、Introduction	01
4、Revision	
5. Specifications	03
5.1 Limit Parameters	03
5.2 General Parameters	
6、Test Standards	04
7、Current Data	05
7.1 Temperature Compensati	on 05
7.2 Current Data Acquisition	05

8.	Mechanical Structure)6
	8.1 Structural Diagram)6
	8.2 Laser QR Code 0)6
	8.3 Connector 0	70
	8.4 Connector Definition	70
	8.5 Diagram of PCB	70
	8.6 Copper Bar Connection C	70
9.	Storage & Packaging	28
	9.1 Storage	38
	9.2 Packaging	38

4、Revision

Date	Date Note		
2023.04.14	/	A0	
2023.05.06	Revise the information of data matrix	A1	
2023.09.21	Revise the derating curve	A2	
2023.12.01	Revise the layout of datasheet	A3	


5、Specifications

5.1 Limit Parameters

Note: Product will affect its reliability and cause unexpected permanent damage if operating under limit parameters for long time.

Parameter	Condition	Min.	Typical	Max.	Unit
Current Measurement Range	±1000A			5	s
Operating Temperature		-40		125	°C
Storage Temperature		-40		125	°C
Humidity				95	%RH

[1] When operating temperature>120°C, derating power is needed. The specific derating range refers to the figure below.

Terminal Temperature (°C)

5.2 General Parameters

Test Conditions: Ambient Temperature 25°C (Unless Otherwise Noted)

Parameter	Condition	Min. Typical	Max.	Unit
Shunt				
Resistance		100		μΩ
Tolerance		±5		%
TCR	-40°C~+125°C	±100		ppm/°C
Continuous Operating Current		±350		A
Thermal EMF			3	μV/°C
Inductance			5	nH
Operating Temperature Range		-55~+175		°C
NTC				
Resistance		10		kΩ
Tolerance		±1		%
TCR	25/85°C	3434		К
Operating Temperature Range		-40~+150		°C
Capacitor				•
Capacitance		0.1		μF
Tolerance		±10		%
Rated Voltage		50		V
Operating Temperature Range		-55~+125		°C

CB_AMC_UM - DECEMBER 2023

6、Test Standards

Test No.	Test Standards	Test Items
General insp	pection	
1	/	Appearance
2	/	Dimension
3	/	Weight
4	/	Flatness of installation
Electrical loa	ads	
5	VW 80000-2021 5.4.20	E-18 Insulation resistance
6	VW 80000-2021 5.4.22	E-20 Dielectric strength
7	GB/T 6148-2005	Drift of temperature
Climatic loa	ds	
8	GB/T 2423.2-2008	High temperature aging
9	GBT 2423.1-2008	Low-temperature operation
10	VW 80000:2021 5.6.5	K-05 Thermal shock (component)
11	GB/T2423.50-2012 MIL-STD-202 Method 103	Damp heat, constant
12	VW 80000:2021 5.8.3	L-03 Service life test – Temperature cycle durability testing
13	GB/T 10125-2021	Salt spray
Mechanical	loads	
14	VW 80000-2021 5.5.1	M-01 Free fall
15	VW 80000-2021 5.5.4	M-04 Vibration test
16	VW 80000-2021 5.5.5	M-05 Mechanical shock
Regulation V	/alidation	
17	RoHS	Pb, Cd, Hg, Cr(V), PBBs, PBDEs
18	REACH	CMR,PBT,vPvB

7、Current Data

7.1 Temperature Compensation

PCBS6918B100P2AC00 applies temperature compensation to weaken the impact of ambient temperature changes on the shunt resistance. A fitting algorithm is used to compute a curve of the shunt resistance change with temperature , as shown in Figure 7-1.

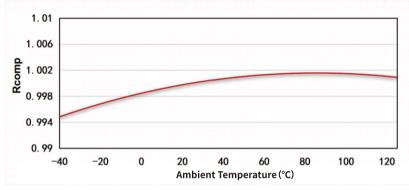


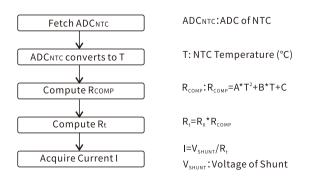
Figure 7-1. R_{COMP} Temperature Characteristic Curve

As shown in Figure 7-1, the compensation factor $R_{\mbox{\tiny COMP}}$ temperature characteristic curve is:

 $R_{COMP} = A^*T^2 + B^*T + C$

Demonstration:

- R_{COMP} : The drift of the shunt resistance relative to the change from initial temperature to present temperature, in ppm.
- T: Present Temperature of Shunt
- A : Coefficient of Quadratic Term $T^{\scriptscriptstyle 2}$
- B: Coefficient of Primary Term T
- C : Constant Term


Shunt resistance $R_{\rm t}$ at present temperature t, through temperature compensation:

 $R_t = R_0 * R_{COMP}^{[1]}$

[1] R_0 is the initial resistance of shunt at lab environment, usually at +25°C ±2°C

[2] Figure 7-1 is only for illustration of this product. It is not the temperature characteristic curve for all products.

7.2 Current Data Acquisition

CB_AMC_UM - DECEMBER 2023

とう 資思

8、Mechanical Structure

8.1 D imensions

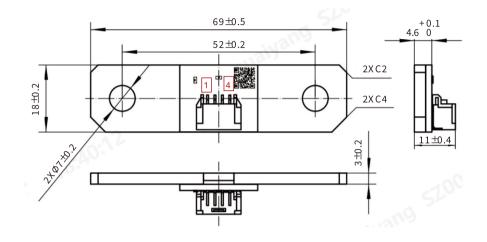


Figure 8.1 Structure Diagram

8.2 Laser QR Code

8.2.1 Code Size

No.	Materials	Size L*W(mm)
1	PCB Cover Size	6*6
2	Data Matrix Size	5*5

8.2.2 Data Matrix

The content of the QR code includes date, serial number, and the actual resistance value (Take 100 $\mu\Omega$ for example, measurement is to three decimal places: 100.000 $\mu\Omega$, output as R100000n, if it is 99.000 $\mu\Omega$ is R99000n)

Content	Year	Month	Day	Module ID	R ₀ ^[1]	Coefficient A	Coefficient B	Constant Term C
Format	YYYY	ММ	DD	XXXXX	Rxxxxxn or Rxxxxxn ^[2]	±x.xxxxxxxxx	±x.xxxxxxxxx	±x.xxxxxxxxx
Example	2020	11	25	00001	R100123n R99123n	-0.000000576	+0.000086780	+0.998188760
	If R≥100nΩ 2020112500001R100123n-0.000000576+0.000086780+0.998188760 If R<100nΩ 2020112500001R99123n-0.000000576+0.000086780+0.998188760 ^[3]							

 $[1]R_{\scriptscriptstyle 0},$ the initial resistance of shunt at lab environment, usually at 25°C±2°C, in nΩ.

[2] If $R \ge 100 \mu \Omega$, R_0 is expressed as Rxxxxxn.

If R<100 $\mu\Omega$, R₀ is expressed as Rxxxxn.

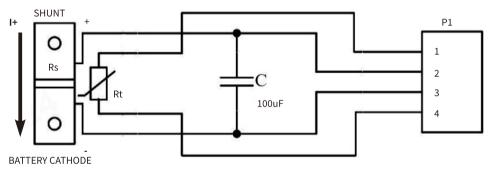
[3] If R $\!\!\!\!\geq\! 100 \mu\Omega$, the total number of characters is 57

If $R\!<\!100\mu\Omega$, the total number of characters is 56

8.3 Connector

Manufacturer	Pin Count	Part #	Structural Diagram
Molex	4	5023520400	

[1] Recommended female connector: 5023510400.


8.4 Connector Definition

No.	Pin No.	Code	Description	Structural Diagram
1	Pin 1	T1	Temperature Sensor Pin 1	
2	Pin 2	S+	Current Signal Positive	
3	Pin 3	S-	Current Signal Negative	
4	Pin 4	Т2	Temperature Sensor Pin 2	Break and a second seco

[1] Refer to the recommended current direction in the PCB Structural Diagram.

[2] Recommend Pin1 and Pin4 as twisted pair. Pin2 and Pin3 as twisted pair.

8.5 PCB Structural Diagram

Figure 8-1. PCB Structural Diagram

[1] The direction of current is related to the installation position of the PCBS product in the BDU, and is not related to the PCBS itself.

[2] The positive and negative electrode of the PIN is determined by the direction of the current in the diagram.

[3] Generally, battery discharge is considered positive and charging is considered negative.

8.6 Copper Bar Connection

- Recommended Bolts: M6
- Recommended Torque: 8-10Nm
- Recommended Width * Thickness of Copper Bar: 24mm*3mm
- Recommended Length of Overlap between Shunt and Copper Bar: 20mm
- Do not use a flat washer between the copper bar and the shunt
- Keep the surface of shunt and copper bar clean and free of scratches

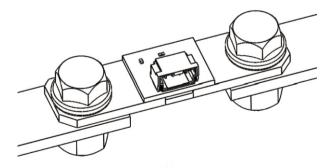


Figure 8-2. Diagram

9.Storage & Packaging

9.1 Storage

- Recommended storage at room temperature.
- The storage environment shall be clean, tidy, dry and free of harmful gases. The packaging case shall be protected from direct sunlight.
- Anti-static bracelet or gloves shall be worn during installation, storage and handling.

9.2 Packaging

9.2.1 General Information

Packaging Element	Specifications		
SN P ^[1]	150		
Container	Carton		
Container Size	509*342*240	mm	

[1] SNP, Standard Number of Package

9.2.2 Auxiliary Materials Information

No.	M aterials	Size L*W *H(mm)	Quantity	Recycle
1	50-Grid EPE Tray	496*328*61	3	No
2	EPE Tray Cover	495*325*5	4	No
3	Anti-Static PE Bag	900*510	1	No

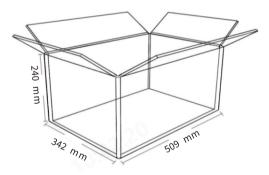


Figure 9-1. Carton Diagram

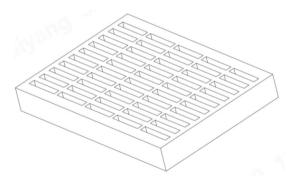


Figure 9-2.Structure Diagram of EPE

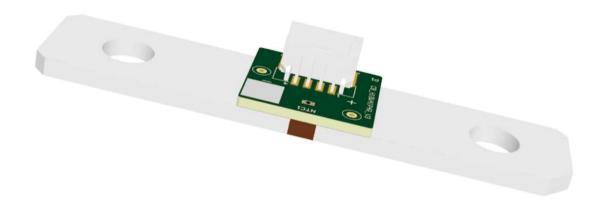
PCBS8518A050P1SC00, Automotive Operation Temperature -40 °C~+125 °C Shunt Based Current Sensing Module

1、Characteristics

- Continuous Operating Range: -350A~+350A
- Connector: Horizontal 4 PIN
- High Accuracy Current Measurement
- Real-Time Temperature Measurement
- Applicable to High Pulse Current
- Low TCR, Low Inductance, Low Thermal EMF
- Excellent Long-Term Stability
- Operating Temperature Range:-40°C~125°C

2、Applications

- BMS Current Measurement
- BDU/PDU Current Measurement


3、Introduction

PCBS8518A050P1SC00 is an automotive current sensing module used to assist in measuring bidirectional DC current. It has high accuracy, low TCR, low inductance, low thermal EMF, and excellent long-term stability and anti-interference ability.

This module is designed based on a low-TCR shunt, which is welded with PCBA and can be installed on the circuit through bolts. It is used to collect bus current and shunt temperature, and send the measured signal to the signal processing side of the user defined module. It can be customized according to the specific technical requirements.

Module Information

Shunt Size	Hole Diameter	Connector
85mm×18mm	8.3mm	5023520400

This datasheet provides PCBS8518A050P1SC00 module reliability data and design suggestions. For the latest information of the datasheet and more RESI products, please visit www.resistor.today. Before actual design, please refer to the latest version of PCBS8518A050P1SC00 module datasheet.

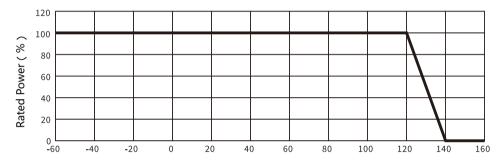
Content

1. Characteristics	
2. Applications	
3.Introduction	
4、Revision	02
5. Specifications	
5.1 Limit Parameters	
5.2 General Parameters	03
6、Test Standards	
7、Current Data	05
7.1 Temperature Compensat	ion 05
7.2 Current Data Acquisition	05

8. Mechanical Structure	06
8.1 Structural Diagram	06
8.2 Laser QR Code	06
8.3 Connector	07
8.4 Connector Definition	07
8.5 Diagram of PCB	07
8.6 Copper Bar Connection	07
9、Storage & Packaging	08
9.1 Storage	08
9.2 Packaging	08

4、Revision

Date	Note	Revised Content
2023.02	/	A0
2023.04.10	Revise the copper bar connection diagram.	A1
2023.09.20	Revise the derating curve	A2
2023.12.05	Revise the layout of datasheet	A3


5、Specifications

5.1 Limit Parameters

Note: Product will affect its reliability and cause unexpected permanent damage if operating under limit parameters for long time.

Parameter	Condition	Min.	Typical	Max.	Unit
Current Measurement Range	±1000A			5	S
Operating Temperature		-40		125	°C
Storage Temperature		-40		125	°C
Humidity				95	%RH

[1] When operating temperature > 120°C, derating power is needed. The specific derating range refers to the figure below.

Terminal Temperature (°C)

5.2 General Parameters

Test Conditions: Ambient Temperature 25°C (Unless Otherwise Noted)

Parameter	Condition	Min. Typical	Max.	Unit
Shunt				
Resistance		50		μΩ
Tolerance		±5		%
TCR	-40°C~+125°C	±100		ppm/°C
Continuous Operating Current		±350		A
Thermal EMF			3	μV/°C
Inductance			5	nH
Operating Temperature Range		-55~+175		°C
NTC				
Resistance		10		kΩ
Tolerance		±1		%
TCR	25/85°C	3435		К
Operating Temperature Range		-50~+150		°C

CB_AMC_UM - DECEMBER 2023

6、Test Standards

Test No.	Test Standards	Test Items				
General ins	General inspection					
1	/	Appearance				
2	/	Dimension				
3	/	Weight				
4	/	Flatness of installation				
Electrical l	oads					
5	VW 80000-2021 5.4.20	E-18 Insulation resistance				
6	VW 80000-2021 5.4.22	E-20 Dielectric strength				
7	GB/T 6148-2005	Drift of temperature				
Climatic lo	ads					
8	GB/T 2423.2-2008	High temperature aging				
9	GBT 2423.1-2008	Low-temperature operation				
10	VW 80000:2021 5.6.5	K-05 Thermal shock (component)				
11	GB/T2423.50-2012 MIL-STD-202 Method 103	Damp heat, constant				
12	VW 80000:2021 5.8.3	L-03 Service life test – Temperature cycle durability testing				
13	GB/T 10125-2021	Salt spray				
Mechanica	l loads					
14	VW 80000-2021 5.5.1	M-01 Free fall				
15	VW 80000-2021 5.5.4	M-04 Vibration test				
16	VW 80000-2021 5.5.5	M-05 Mechanical shock				
Regulation	Validation					
17	RoHS	Pb, Cd, Hg, Cr(V), PBBs, PBDEs				
18	REACH	CMR,PBT,vPvB				

7、Current Data

7.1 Temperature Compensation

PCBS8518A050P1SC00 applies temperature compensation to weaken the impact of ambient temperature changes on the shunt resistance. A fitting algorithm is used to compute a curve of the shunt resistance change with temperature, as shown in Figure 7-1.

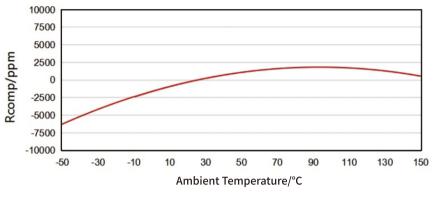


Figure 7-1. R_{COMP} Temperature Characteristic Curve

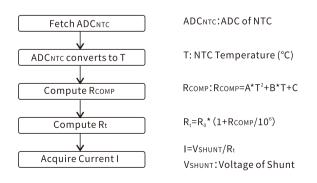
As shown in Figure 7-1, the compensation factor $R_{{\scriptscriptstyle COMP}}$ temperature characteristic curve is:

 $R_{COMP} = A^{T^2} + B^{T+C}$

Demonstration:

R_{COMP} : The drift of the shunt resistance relative to the change from initial temperature to present temperature, in ppm.

- T: Present Temperature of Shunt
- A : Coefficient of Quadratic Term T²
- B: Coefficient of Primary Term T
- C : Constant Term


Shunt resistance R_t at present temperature t, through temperature compensation:

R_t=R₀* (1+RCOMP/10⁶)^[1]

[1] $R_{_0}$ is the initial resistance of shunt at lab environment, usually at +25 $^\circ$ C $\pm 2 \,^\circ$ C

[2] Figure 7-1 is only for illustration of this product. It is not the temperature characteristic curve for all products.

7.2 Current Data Acquisition

CB_AMC_UM – DECEMBER 2023

8、Mechanical Structure

8.1 Dimensions

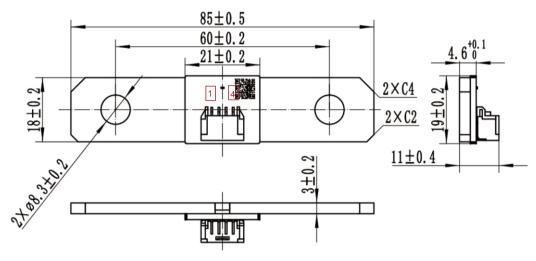


Figure 8.1 Structure Diagram

8.2 Laser QR Code

8.2.1 Code Size

No.	Materials	Size L*W(mm)
1	PCB Cover Size	6*6
2	Data Matrix Size	5*5

8.2.2 Data Matrix

Content	Year	Month	Day	Module ID	R ₀ ^[1]	Coefficient A ^[2]	Coefficient B ^[3]	Constant Term C ^[4]
Format	YYYY	ММ	DD	XXXXX	RXXX.XXXX	±x.xxxxxxxx	\pm XXX.XXXXX	\pm XXXX.XXX
Example	2023	02	13	00001	R051.4912	-0.45837105	+130.48848	-2975.730
Livample	2023021300001R051.4912-0.45837105+130.48848-2975.730 ^[5]							

 $[1]R_0$, the initial resistance of shunt at lab environment, usually at 25°C ± 2°C, rounded to 4 decimal places, in $\mu\Omega$.

[2]Coefficient A of Quadratic Term T², rounded to 8 decimal places.

[3]Coefficient B of Primary Term T, rounded to 5 decimal places.

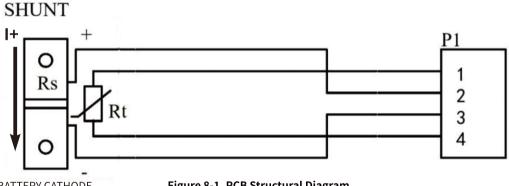
[4]Constant Term C, rounded to 3 decimal places.

[5] The total number of characters is 52.

8.3 Connector

Manufacturer	Pin Count	Part #	Structural Diagram
Molex	4	5023520400	

[1] 推荐对插母头型号:5023510400。


8.4 Connector Definition

No.	Pin No.	Code	Description	Structural Diagram
1	Pin 1	T1	Temperature Sensor Pin 1	
2	Pin 2	S+	Current Signal Positive	
3	Pin 3	S-	Current Signal Negative	
4	Pin 4	T2	Temperature Sensor Pin 2	₽ ₽~;~;~; ₽₽

[1] Refer to the recommended current direction in the PCB Structural Diagram.

[2] Recommend Pin1 and Pin4 as twisted pair. Pin2 and Pin3 as twisted pair.

8.5 PCB Structural Diagram

BATTERY CATHODE

Figure 8-1. PCB Structural Diagram

[1] The direction of current is related to the installation position of the PCBS product in the BDU, and is not related to the PCBS itself. [2] The positive and negative electrode of the PIN is determined by the direction of the current in the diagram.

[3] Generally, battery discharge is considered positive and charging is considered negative.

8.6 Copper Bar Connection

- Recommended Bolts: M8
- Recommended Torque: 15-20Nm
- Recommended Width * Thickness of Copper Bar: 24mm*3mm
- Recommended Length of Overlap between Shunt and Copper Bar: 20mm
- Do not use a flat washer between the copper bar and the shunt
- Keep the surface of shunt and copper bar clean and free of scratches

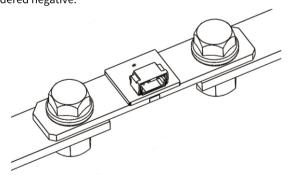


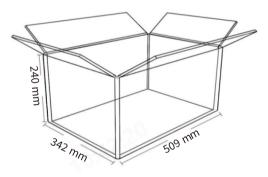
Figure 8-2. Shunt Connection Diagram

9.Storage & Packaging

9.1 Storage

- Recommended storage at room temperature.
- The storage environment shall be clean, tidy, dry and free of harmful gases. The packaging case shall be protected from direct sunlight.
- Anti-static bracelet or gloves shall be worn during installation, storage and handling.

9.2 Packaging


9.2.1 General Information

Packaging Element	Specifications		
SN P ^[1]	150		
Container	Carton		
Container Size	509*342*240 mm		

[1] SNP, Standard Number of Package

9.2.2 Auxiliary Materials Information

No.	Materials	Size L*W*H(mm)	Quantity	Recycle
1	50-Grid EPE Tray	496*328*61	3	No
2	EPE Tray Cover	495*325*5	4	No
3	Anti-Static PE Bag	900*510	1	No

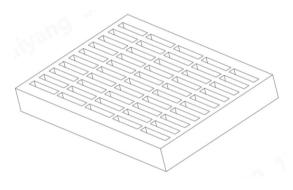


Figure 9-2.Structure Diagram of EPE

PCBS8436P025T2AC00, Automotive Operation Temperature -40 °C~+125 °C Shunt Based Current Sensing Module

1. Characteristics

- Continuous Operating Range: -1000A~+1000A
- Connector: Horizontal 9 PIN
- High Accuracy Current Measurement
- Real-Time Temperature Measurement
- Applicable to High Pulse Current
- $\boldsymbol{\cdot}$ Low TCR, Low Inductance, Low Thermal EMF
- Excellent Long-Term Stability
- Operating Temperature Range:-40°C~125°C

2、Applications

- BMS Current Measurement
- BDU/PDU Current Measurement

3、Introduction

PCBS8436P025T2AC00 is an automotive current sensing module used to assist in measuring bidirectional DC current. It has high accuracy, low TCR, low inductance, low thermal EMF, and excellent long-term stability and anti-interference ability.

This module is designed based on a low-TCR shunt, which is welded with PCBA and can be installed on the circuit through bolts. It is used to collect bus current and shunt temperature, and send the measured signal to the signal processing side of the user defined module. It can be customized according to the specific technical requirements.

Module Information

Shunt Size	Hole Diameter	Connector	
84mm×36mm	8.3mm	5023520900	

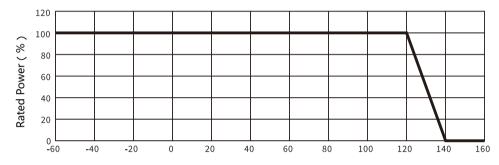
Content

1. Characteristics 01
2、Applications 01
3.Introduction 01
4、Revision 02
5、Specifications 03
5.1 Limit Parameters 03
5.2 General Parameters 03
6、Test Standards 04
7.Current Data 05
7.1 Temperature Compensation 05
7.2 Current Data Acquisition

8.	Mechanical Structure	06
	8.1 Structural Diagram	06
	8.2 Laser QR Code	06
	8.3 Connector	07
	8.4 Connector Definition	07
	8.5 Diagram of PCB	07
	8.6 Copper Bar Connection	07
9.	Storage & Packaging	08
	9.1 Storage	08
	9.2 Packaging	08

4、Revision

Date	Note	Revised Content
2022.10.28	/	A0
2023.05.09	The upper limit of operating temperature changed from +105°C to +125°C. Derating curve is added;	A1
2023.11.01	Complement connector definitions	A2
2023.11.13	Revise parameters	A3


5、Specifications

5.1 Limit Parameters

Note: Product will affect its reliability and cause unexpected permanent damage if operating under limit parameters for long time.

Parameter	Condition	Min.	Typical	Max.	Unit
Current Measurement Range	±3000A			5	S
Operating Temperature		-40		125	°C
Storage Temperature		-40		125	°C
Humidity				95	%RH

[1] When operating temperature > 120°C, derating power is needed. The specific derating range refers to the figure below.

Terminal Temperature (°C)

5.2 General Parameters

Test Conditions: Ambient Temperature 25°C (Unless Otherwise Noted)

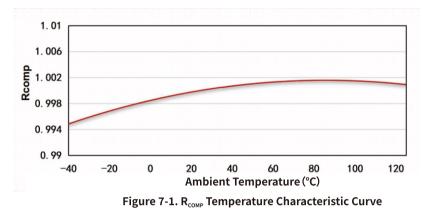
Parameter	Condition	Min. Typical	Max.	Unit
Shunt (Component)				
Resistance		25		μΩ
Tolerance		±5		%
TCR	-40°C~+125°C	±100		ppm/°C
Continuous Operating Current		±1000		A
Thermal EMF			3	μV/°C
Inductance			5	nH
Operating Temperature Range		-55~+175		°C
NTC (Component)				-
Resistance		10		kΩ
Tolerance		±1		%
TCR	25/85°C	3435		К
Operating Temperature Range		-50~+150		°C
PCBS (Assembly)				
Initial Resistance Tolerance	Scan the QR code on the product to obtain the initial resistance R ₀ ^[1]	±0.2		%

[1] $R_{_0}$ is the initial resistance of shunt at lab environment, usually at +25°C \pm 2°C

CB_AMC_UM - DECEMBER 2023

6、Test Standards

Test No.	Test Standards	Test Items					
General ins	General inspection						
1	/	Appearance					
2	/	Dimension					
3	/	Weight					
4	/	Flatness of installation					
Electrical l	oads						
5	VW 80000-2021 5.4.20	E-18 Insulation resistance					
6	VW 80000-2021 5.4.22	E-20 Dielectric strength					
7	GB/T 6148-2005	Drift of temperature					
Climatic lo	ads						
8	GB/T 2423.2-2008	High temperature aging					
9	GBT 2423.1-2008	Low-temperature operation					
10	VW 80000:2021 5.6.5	K-05 Thermal shock (component)					
11	GB/T2423.50-2012 MIL-STD-202 Method 103	Damp heat, constant					
12	VW 80000:2021 5.8.3	L-03 Service life test – Temperature cycle durability testing					
13	GB/T 10125-2021	Salt spray					
Mechanica	l loads						
14	VW 80000-2021 5.5.1	M-01 Free fall					
15	VW 80000-2021 5.5.4	M-04 Vibration test					
16	VW 80000-2021 5.5.5	M-05 Mechanical shock					
Regulation	Validation						
17	RoHS	Pb, Cd, Hg, Cr(V), PBBs, PBDEs					
18	REACH	CMR,PBT,vPvB					



7、Current Data

7.1 Temperature Compensation

PCBS8436P025T2AC00 applies temperature compensation to weaken the impact of ambient temperature changes on the shunt resistance. A fitting algorithm is used to compute a curve of the shunt resistance change with temperature, as shown in Figure 7-1.

As shown in Figure 7-1, the compensation factor R_{COMP} temperature characteristic curve is:

 $R_{COMP} = A^*T^2 + B^*T + C$

Demonstration:

R_{COMP} : The drift of the shunt resistance relative to the change from initial temperature to present temperature, in ppm.

- T: Present Temperature of Shunt
- A : Coefficient of Quadratic Term T²
- B: Coefficient of Primary Term T
- C : Constant Term


Shunt resistance R_t at present temperature t, through temperature compensation:

 $R_t = R_0 * R_{comp}^{[1]}$

[1] $R_{_0}$ is the initial resistance of shunt at lab environment, usually at +25 $^\circ$ C $\pm2^\circ$ C

[2] Figure 7-1 is only for illustration of this product. It is not the temperature characteristic curve for all products.

7.2 Current Data Acquisition

8、Mechanical Structure

8.1 Dimensions

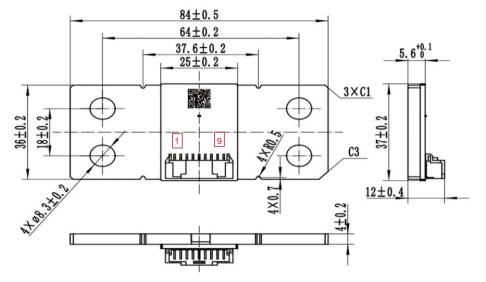


Figure 8.1 Structure Diagram

8.2 Laser QR Code

8.2.1 Code Size

No.	Materials	Size L*W(mm)
1	PCB Cover Size	7*7
2	Data Matrix Size	5*5

8.2.2 Data Matrix

The content of the QR code includes date, serial number, and the actual resistance value

(Take 100 $\mu\Omega$ for example, measurement is to three decimal places: 100.000 $\mu\Omega$, output as R100000n, if it is 99.000 $\mu\Omega$ is R99000n)

Content	Year	Month	Day	Module ID	R ₀ ^[1]	Coefficient A	Coefficient B	Constant Term C
Format	YYYY	ММ	DD	XXXXX	Rxxxxxn or Rxxxxxn ^[2]	±x.xxxxxxxxx	±x.xxxxxxxxx	±x.xxxxxxxxx
Example	2020	2020 11 25		00001	R100123n R99123n	-0.000000576	+0.000086780	+0.998188760
	If R \geq 100n Ω 2020112500001R100123n-0.000000576+0.000086780+0.998188760 If R $<$ 100n Ω 2020112500001R99123n-0.000000576+0.000086780+0.998188760 ^[3]							

 $[1]R_0$, the initial resistance of shunt at lab environment, usually at 25°C±2°C, in n Ω .

[2] If $R \ge 100 \mu \Omega$, R_0 is expressed as Rxxxxxn.

If R<100 $\mu\Omega$, R₀ is expressed as Rxxxxn.

[3] If $R \ge 100 \mu \Omega$, the total number of characters is 57

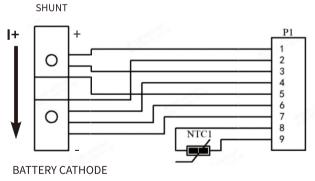
If R < 100 $\mu\Omega$, the total number of characters is 56

8.3 Connector

Manufacturer	Pin Count	Part #	Structural Diagram
Molex	9	5023520900	

[1] Recommended female connector: 5023510400.

8.4 Connector Definition


No.	Pin No.	Code	Description	Structural Diagram
1	Pin 1	A+	Current Signal Group A Positive	
2	Pin 2	A-	Current Signal Group A Negative	
3	Pin 3	B+	Current Signal Group B Positive	
4	Pin 4	B-	Current Signal Group B Negative	
5	Pin 5	C+	Current Signal Group C Positive	
6	Pin 6	C-	Current Signal Group C Negative	
7	Pin 7	GND	Shunt Common Mode End	
8	Pin 8	T1	Temperature Sensor Pin 1	
9	Pin 9	T2	Temperature Sensor Pin 2	

[1] Refer to the recommended current direction in the PCB Structural Diagram.

[2] The recommended current sampling channel is Group C as the main channel and Group B & A as the auxiliary channel.

[3] Recommend Pin1 and Pin2 as twisted pair. Pin3 and Pin4 as twisted pair. Pin5 and Pin6 as twisted pair. Pin8 and Pin9 as twisted pair.

8.5 PCB Structural Diagram

Figure 8-1. PCB Structural Diagram

[1] The direction of current is related to the installation position of the PCBS product in the BDU, and is not related to the PCBS itself.

 $\left[2\right]$ The positive and negative electrode of the PIN is determined by the direction of the current in the diagram.

[3] Generally, battery discharge is considered positive and charging is considered negative.

8.6 Copper Bar Connection

- Recommended Bolts: M8
- Recommended Torque: 15-20Nm
- Recommended Width * Thickness of Copper Bar: 40mm*4mm
- Recommended Length of Overlap between Shunt and Copper Bar: 20mm
- Do not use a flat washer between the copper bar and the shunt
- Keep the surface of shunt and copper bar clean and free of scratches

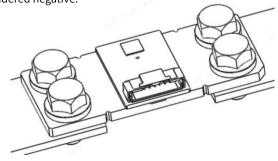


Figure 8-2. 8436 Shunt Connection Diagram

9.Storage & Packaging

9.1 Storage

- Recommended storage at room temperature.
- The storage environment shall be clean, tidy, dry and free of harmful gases. The packaging case shall be protected from direct sunlight.
- Anti-static bracelet or gloves shall be worn during installation, storage and handling.

9.2 Packaging

9.2.1 General Information

Packaging Element	Specifications		
SN P ^[1]	150		
Container	Carton		
Container Size	509*342*240 mm		

[1] SNP, Standard Number of Package

9.2.2 Auxiliary Materials Information

No.	Materials	Size L*W*H(mm)	Quantity	Recycle
1	50-Grid EPE Tray	496*328*61	3	No
2	EPE Tray Cover	495*325*5	4	No
3	Anti-Static PE Bag	900*510	1	No

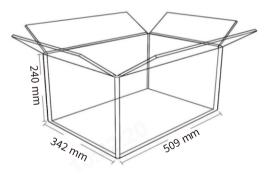


Figure 9-1. Carton Diagram

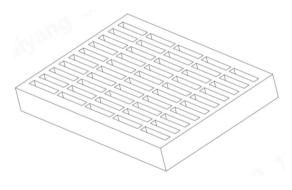


Figure 9-2.Structure Diagram of EPE

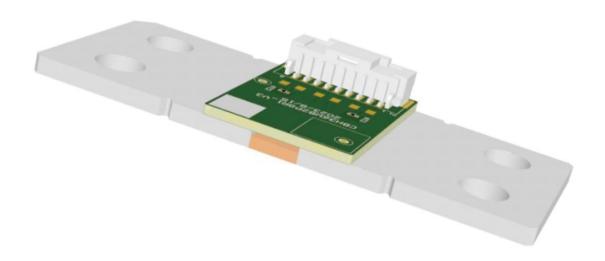
PCBS8536P050T1SN00, Automotive Operation Temperature -40 °C~+125 °C Shunt Based Current Sensing Module

1. Characteristics

- Continuous Operating Range: -600A~+600A
- Connector: Horizontal 9 PIN
- High Accuracy Current Measurement
- Real-Time Temperature Measurement
- Applicable to High Pulse Current
- Low TCR, Low Inductance, Low Thermal EMF
- Excellent Long-Term Stability
- Operating Temperature Range:-40°C~125°C

2、Applications

- BMS Current Measurement
- BDU/PDU Current Measurement


3、Introduction

PCBS8536P050T1SN00 is an automotive current sensing module used to assist in measuring bidirectional DC current. It has high accuracy, low TCR, low inductance, low thermal EMF, and excellent long-term stability and anti-interference ability.

This module is designed based on a low-TCR shunt, which is welded with PCBA and can be installed on the circuit through bolts. It is used to collect bus current and shunt temperature, and send the measured signal to the signal processing side of the user defined module. It can be customized according to the specific technical requirements.

Module Information

Shunt Size	Hole Diameter	Connector	
85mm×36mm	8.3mm	5023520900	

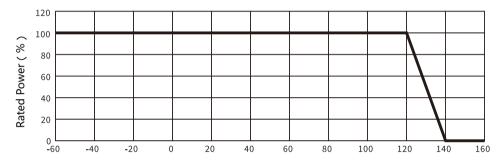
Content

1. Characteristics	01
2. Applications	
3.Introduction	01
4、Revision	
5. Specifications	03
5.1 Limit Parameters	03
5.2 General Parameters	03
6、Test Standards	
7、Current Data	05
7.1 Temperature Compensat	ion 05
7.2 Current Data Acquisition	05

8.	Mechanical Structure	06
	8.1 Structural Diagram	06
	8.2 Laser QR Code	06
	8.3 Connector	07
	8.4 Connector Definition	07
	8.5 Diagram of PCB	07
	8.6 Copper Bar Connection	07
9.	Storage & Packaging	08
	9.1 Storage	08
	9.2 Packaging	08

4、Revision

Date	Note	Revised Content
2023.02	/	A0
2023.04.10	The upper limit of operating temperature changed from +105°C to +125°C. Derating curve is added; Flat washer is removed in Copper Bar Connection Diagram.	A1
2023.08.24	Revise the information of data matrix	A2
2023.11.02	Revise the derating curve	A3
2023.12.01	Revise the layout of datasheet	A4


5、Specifications

5.1 Limit Parameters

Note: Product will affect its reliability and cause unexpected permanent damage if operating under limit parameters for long time.

Parameter	Condition	Min.	Typical	Max.	Unit
Current Measurement Range	±3000A			10	S
Operating Temperature		-40		125	°C
Storage Temperature		-40		125	°C
Humidity				95	%RH

[1] When operating temperature > 120°C, derating power is needed. The specific derating range refers to the figure below.

Terminal Temperature (°C)

5.2 General Parameters

Test Conditions: Ambient Temperature 25°C (Unless Otherwise Noted)

Parameter	Condition	Min.	Typical	Max.	Unit				
Shunt									
Resistance			50		μΩ				
Tolerance			±5		%				
TCR	-40°C~+125°C		±100		ppm/°C				
Continuous Operating Current			±600		Α				
Thermal EMF				3	μV/°C				
Inductance				5	nH				
Operating Temperature Range			-55~+175		°C				
NTC									
Resistance			10		kΩ				
Tolerance			±1		%				
TCR	25/85°C	3435			К				
Operating Temperature Range			-50~+150		°C				

CB_AMC_UM - DECEMBER 2023

6、Test Standards

Test No.	Test Standards	Test Items
General in	spection	
1	/	Appearance
2	/	Dimension
3	/	Weight
4	/	Flatness of installation
Electrical l	oads	
5	VW 80000-2021 5.4.20	E-18 Insulation resistance
6	VW 80000-2021 5.4.22	E-20 Dielectric strength
7	GB/T 6148-2005	Drift of temperature
Climatic lo	ads	
8	GB/T 2423.2-2008	High temperature aging
9	GBT 2423.1-2008	Low-temperature operation
10	VW 80000:2021 5.6.5	K-05 Thermal shock (component)
11	GB/T2423.50-2012 MIL-STD-202 Method 103	Damp heat, constant
12	VW 80000:2021 5.8.3	L-03 Service life test – Temperature cycle durability testing
13	GB/T 10125-2021	Salt spray
Mechanica	l loads	
14	VW 80000-2021 5.5.1	M-01 Free fall
15	VW 80000-2021 5.5.4	M-04 Vibration test
16	VW 80000-2021 5.5.5	M-05 Mechanical shock
Regulation	Validation	
17	RoHS	Pb, Cd, Hg, Cr(V), PBBs, PBDEs
18	REACH	CMR,PBT,vPvB

7、Current Data

7.1 Temperature Compensation

PCBS8536P050T1SN00 applies temperature compensation to weaken the impact of ambient temperature changes on the shunt resistance. A fitting algorithm is used to compute a curve of the shunt resistance change with temperature, as shown in Figure 7-1.

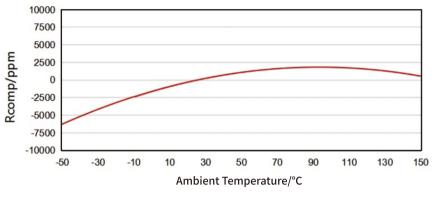


Figure 7-1. R_{COMP} Temperature Characteristic Curve

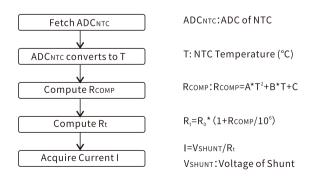
As shown in Figure 7-1, the compensation factor R_{COMP} temperature characteristic curve is:

 $R_{COMP} = A^{T^2} + B^{T+C}$

Demonstration:

R_{COMP} : The drift of the shunt resistance relative to the change from initial temperature to present temperature, in ppm.

- T: Present Temperature of Shunt
- A : Coefficient of Quadratic Term T²
- B: Coefficient of Primary Term T
- C : Constant Term


Shunt resistance R_t at present temperature t, through temperature compensation:

R_t=R₀*(1+RCOMP/10⁶)^[1]

[1] $R_{_0}$ is the initial resistance of shunt at lab environment, usually at +25 $^\circ$ C $\pm2^\circ$ C

[2] Figure 7-1 is only for illustration of this product. It is not the temperature characteristic curve for all products.

7.2 Current Data Acquisition

CB_AMC_UM - DECEMBER 2023

25 斎思

8、Mechanical Structure

8.1 Dimensions

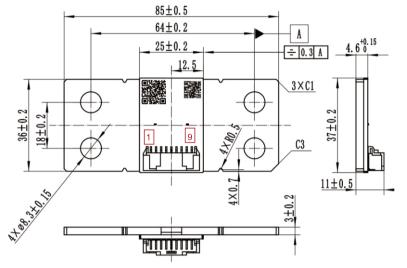


Figure 8.1 Structure Diagram

8.2 Laser QR Code

8.2.1 Code Size

No.	Materials Size L*W(mm)				
1	PCB Cover Size	10*10			
	Data Matrix Size	9*9			
2	PCB Cover Size	7*7			
2	Data Matrix Size	6*6			

8.2.2 Data Matrix

Code 1 :

Content	Year	Month	Day	Module ID	R ₀ ^[1]	Coefficient A ^[2]	Coefficient B ^[3]	Constant Term C ^[4]
Format	YYYY	ММ	DD	XXXXX	RXXX.XXXX	±x.xxxxxxxx	\pm XXX.XXXXX	\pm XXXX.XXX
Example	2023	02	13	00001	R051.4912	-0.45837105	+130.48848	-2975.730
Livample	2023021300001R051.4912-0.45837105+130.48848-2975.730 ^[5]							

 $[1]R_0$, the initial resistance of shunt at lab environment, usually at 25°C ± 2°C, rounded to 4 decimal places, in $\mu\Omega$.

[2]Coefficient A of Quadratic Term T², rounded to 8 decimal places.

[3]Coefficient B of Primary Term T, rounded to 5 decimal places.

[4]Constant Term C, rounded to 3 decimal places.

[5]The total number of characters is 52.

 $\mathsf{Code}\ 2:$

Content	Part Number PIN	Hardware Version	Date	Serial Number		
Evample	PCBS8536P050T1SN00	V2.0	B62	00001		
Example	PCBS8536P050T1SN00V2.0B620001					

8.3 Connector

Manufacturer	Pin Count	Part #	Structural Diagram
Molex	9	5023520900	

8.4 Connector Definition

No.	Pin No.	Code	Description	Structural Diagram
1	Pin 1	TL1	Temperature Sensor Pin 1	
2	Pin 2	TL2	Temperature Sensor Pin 2	
3	Pin 3	SB+	Current Signal Group B Positive	
4	Pin 4	SA+	Current Signal Group A Positive	
5	Pin 5	SA-	Current Signal Group A Negative	
6	Pin 6	SB-	Current Signal Group B Negative	
7	Pin 7	GND	Shunt Common Mode End	I I
8	Pin 8	TR1	Temperature Sensor Pin 1	
9	Pin 9	TR2	Temperature Sensor Pin 2	

[1] Refer to the recommended current direction in the PCB Structural Diagram.

[2] The recommended current sampling channel is Group C as the main channel and Group B as the auxiliary channel.

[3] Recommend Pin1 and Pin2 as twisted pair. Pin3 and Pin6 as twisted pair. Pin4 and Pin5 as twisted pair. Pin8 and Pin9 as twisted pair.

8.5 PCB Structural Diagram

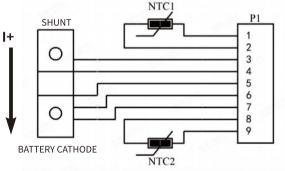


Figure 8-1. PCB Structural Diagram

- [1] The direction of current is related to the installation position of the PCBS product in the BDU, and is not related to the PCBS itself.
- [2] The positive and negative electrode of the PIN is determined by the direction of the current in the diagram.

[3] Generally, battery discharge is considered positive and charging is considered negative.

8.6 Copper Bar Connection

- Recommended Bolts: M8
- Recommended Torque: 15-20Nm
- Recommended Width * Thickness of Copper Bar: 40mm*3mm
- Recommended Length of Overlap between Shunt and Copper Bar: 20mm
- Do not use a flat washer between the copper bar and the shunt
- Keep the surface of shunt and copper bar clean and free of scratches

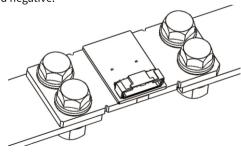


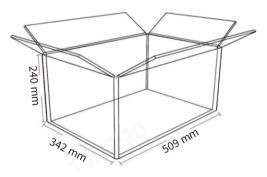
Figure 8-2. 8536 Shunt Connection Diagram

9.Storage & Packaging

9.1 Storage

- Recommended storage at room temperature.
- The storage environment shall be clean, tidy, dry and free of harmful gases. The packaging case shall be protected from direct sunlight.
- Anti-static bracelet or gloves shall be worn during installation, storage and handling.

9.2 Packaging


9.2.1 General Information

Packaging Element	Specifications		
SN P ^[1]	150		
Container	Carton		
Container Size	509*342*240	mm	

[1] SNP, Standard Number of Package

9.2.2 Auxiliary Materials Information

No.	Materials	Size L*W*H(mm)	Quantity	Recycle
1	50-Grid EPE Tray	496*328*61	3	No
2	EPE Tray Cover	495*325*5	4	No
3	Anti-Static PE Bag	900*510	1	No

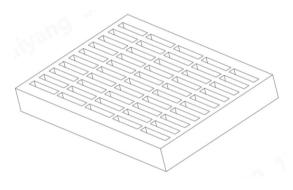


Figure 9-2.Structure Diagram of EPE

Disclaimer

All products, datasheets and data can be changed without prior notice.

C&B Electronics Shenzhen CO., LTD., its affiliates, distributors, employees, and any other person acting on its behalf (collectively referred to as "C&B Electronics") shall not bear any legal responsibility for any errors, inaccuracies, or incompleteness of information related to the product disclosed under this agreement or other disclosures.

Product datasheet does not constitute an extension or revision of the purchase terms and conditions in C&B Electronics, including but not limited to the warranties under this agreement.

Unless specified in the purchase terms and conditions, C&B Electronics makes no guarantees, representations or warranties.

- To the maximum extent permitted by applicable laws, C&B Electronics hereby makes the following disclaimer:
- (1) All liabilities arising from the use of the product;
- (2) Including but not limited to all liabilities arising from special, indirect or incidental damages;

(3) All implied warranties, including warranties of suitability for special purposes, non infringement possibility, and marketability.

The information provided in the datasheet and parameter tables may vary in different applications, and the performance of the product may change over time. The recommended application instructions for the product are based on C&B Electronics' understanding and experience of typical requirements. Customers are obligated to verify whether the product is suitable for a specific application based on the parameters provided in the datasheet. Before officially installing or using the product, you should ensure that you have obtained the latest version of relevant information, which can be obtained through the website: resistor.today.

The signing of this agreement does not constitute an express, implied or other form of license related to all intellectual property rights of C&B Electronic Products.

Unless explicitly stated, the products listed in this agreement are not applicable to lifesaving or life sustaining products. In the absence of a clear indication, the customer shall bear all risks caused by unauthorized use of the above products and agree to fully compensate C&B Electronics for all losses caused by such sales or use. For written product terms for such special applications, please contact authorized personnel from C&B Electronics to obtain.

The names and markings on the listed products may be trademarks owned by others.

CB series checklist				
Customer name				
Stage of project				
Key information				
Application scenario				
Rated current				
Accuracy				
Terminal resistor				
Basic information				
Peak current & and duration				
Supply voltage				
Galvanic isolation				
Communication protocol				
Current direction				
Data frame				
Data format				
CAN speed				
Current ID				
Temperature ID				
Output Rate of Current Message				
Output Rate of Temperature Message				
Wiring harness				
Additional information				
High voltage				
Copper busbar	Width×thickness(mm)			

Address: Floor 18, North Block 2, Baoneng S&T Park, Longhua, Shenzhen, China Phone: 0755-82899519 Email: resi@cbeureka.com Website: www.resistor.today

anno

Wechat Mini Program

WeChat Official

C&B Electronics Shenzhen CO., LTD