

Current Sensor Product Catalogue

2024

CB350M6918A	01-22
CB600F8536A	23-44
CB600M8536A	45-66
PCBS6918B100P2AC00	67-74
PCBS8436P025T2AC00	75-82
PCBS8518A050P1SC00	83-90
PCBS8536P050T1SN00	91-98

CB350M6918A Series, Automotive, 0.5% Tolerance Operating Temperature -40°C~+105°C Shunt Based Current Sensor

1、Characteristics

- Current Sensing: Measurement Range:-8000A~+8000A
- Continuous Operating Range: -350A~+350A
- Measurement Accuracy: ±0.5%(MAX)
- Resolution: 10mA
- Temperature Sensing: Measurement Range: -50°C~+150°C
- Measurement Error: ±3°C (MAX)
- Resolution: 0.1°C
- Communication Protocol:CAN2.0 A/B
- Selectable Data Format
- Configurable CAN ID
- Configurable CAN Speed: 250Kbps-1Mbps
- Supply Voltage:6VDC~18VDC
- Operating Temperature Range: -40°C~+105°C
- Power Consumption: ≤216mW @12VDC
- Galvanic Isolation: 3000VAC

2、Applications

- Automotive Current Monitor
- Grid Energy Storage
- UPS
- Charging Station

3、Introduction

CB350M6918A current sensor is an automotive current sensing module, which can be used to measure bidirectional DC current. Featuring high accuracy, low power consumption, wide operating temperature range, excellent response speed, temperature stability and anti-interference ability.

The sensor is designed based on low-TCR shunt, adopts highprecision ADC, communicates through CAN2.0 A/B protocol, and has large ranges of current and temperature measurement capabilities, and current compensation at whole temperature range.

The sensor meets the operating temperature range of -40°C~+105°C, can apply to the continuous operating current of -350A~+350A at the whole temperature range, and the current measurement accuracy is no more than \pm 0.5% in the range of +20A~+350A or -350A~-20A.

Power supply of CB350M6918A current sensor is from 6VDC to 18VDC. Its power consumption is controlled below 216mW (12VDC), and it can realize complete high-low voltage isolation, which can be applied to the main positive electrode or the main negative electrode of the battery system.

Sensor Information

Part Number	Shunt Thickness	Resistance	Terminal Resistor
CB350M6918A1SS00	3mm	50μΩ	Yes
CB350M6918A1SN00	3mm	50μΩ	No

[1] For part numbers not included in the table, please contact us for technical support.

Typical Application

255 参思

This datasheet provides CB350M 6918A current sensor reliability data and design suggestions. For the latest information of the datasheet and more RESI products, please visit www.resistor.today. Before actual design, please refer to the latest version of CB350M6918A current sensor datasheet.

Content

1. Characteristics 01
2. Applications 01
3. Introduction 01
4. Revision
5. Specifications 03
5.1 Limit Parameters 03
5.2 General Parameters 03
5.3 Typical Characteristic Curve 05
6、Test Standards09
7、Communication11
7.1 CAN Protocol11
7.2 Data Frame12

7.3 Bus Topology	
7.4 Measuring Mode	16
8、Mechanical Structure	
8.1 Dimensions	
8.2 Copper Bar Connection	18
8.3 Connector	18
8.4 Connector Definition	19
9、Typical Applications	
10、Storage & Packaging	21
10.1 Storage	
10.2 Packaging	
11、Part Number Information	22

4、Revision

Date	Revised Content	Note
2023.02	/	A0
2023.04.06	Flat washer is removed in Copper Bar Connection Diagram	A1
2023.08.29	Change the product packaging	A2
2023.09.14	Modify limit parameters of CAN, format B of data frame, order of connector pin and start-up time test curve	A3

5、Specifications

5.1 Limit Parameters

Note: Product will affect its reliability and cause unexpected permanent damage if operating under limit parameters for long time.

Parameter	Condition	M in.	Typical	Max.	Unit
Supply Voltage				30	VDC
Current Measurement Range	±1400A			10	s
Current measurement Kange	±8000A			50	ms
CANInterface	Configured 120Ω Terminal Resistor (Continuous Power Supply)			6	V
	ESD			8	KV
Operating Temperature		-40		105	°C
StorageTemperature		-40		125	°C
Humidity				95	%RH

5.2 General Parameters

Test Conditions: Ambient Temperature 25 °C (Unless Otherwise Noted)

Parameter	Condition	M in.	Typical	Max.	Unit
Power Supply					
Supply Voltage		6	12	18	VDC
	6V	10	14	18	mA
Operating Current	12V	10	14	18	mA
	18V	10	14	18	mA
	6V	60	85	108	mW
Power Consumption	12V	120	170	216	mW
	18V	180	250	324	mW
Start-Up Time	Required time from power- on to sending the first frame valid message	100	130	150	ms

Current Measurement (- 40°C~+105°C)

	-20A~+20A	±50	±100	mA
A	+ 20A~ + 350A or - 350A~ - 20A		±0.5	%
Accuracy	+ 350A~ + 1000A or - 1000A~ - 350A	±0.5	±1	%
	+ 1000A ~ + 8000 A or - 8000A ~ - 1000A	±1	±5	%
Duration	-350A~+350A	Continuous		
	±600A		5	min
	±1400A		5	S
	±8000A		40	ms
Decolution	-350A~+350A	10		mA
Resolution	>350A or<-350A	60		mA
Linearity	-350A~+350A	±0.02		%
	>350A or<-350A	±0.2		%

Test Conditions: Ambient Temperature 25 °C (Unless Otherwise Noted)

Parameter	Condition	Min.	Typical	Max.	Unit
Temperature Measurement					
Measurement Range		- 50		+150	°C
Measurement Error	-50°C~+150°C	-3		+ 3	°C
Resolution			0.1		°C
Power & Temperature Rise					
DCImpedance		45	50	55	μΩ
Inductance				3	nH
Temperature R ise	±350A@85°C Copper Bus Bar 20mm*3mm, 15Nm			60	°C
	±350A@85°C Copper Bus Bar 20mm*3mm, 15Nm			60	°C
Communication					
Protocol	CAN2.0A/B				
Communication Speed		250	500	1000	Kbps
Terminal Desistor	With Terminal Resistor	108	120	132	Ω
	Without Terminal Resistor				
Output Rate of Current Message		10	10	1000	ms
Output Rate of Temperature Message		10	100	1000	ms
Isolation					
Galvanic Isolation			3000		VAC
CreepageDistance			5.5		mm
Clearance			4.1		mm

5.3 Typical Characteristic Curve

5.3.1 Start-Up Time Test Curve

Figure 5-1 Sample1 Start-Up Time Test Curve

Figure 5-3 Sample3 Start-Up Time Test Curve

Figure 5-5 Sample5 Start-Up Time Test Curve

Figure 5-7 Sample7 Start-Up Time Test Curve

Figure 5-2 Sample2 Start-Up Time Test Curve

Figure 5-4 Sample4 Start-Up Time Test Curve

Figure 5-6 Sample6 Start-Up Time Test Curve

Figure 5-8 Sample8 Start-Up Time Test Curve

[1] A channel acquires data of power supply, VCC and GND.

[2] B channel acquires data of CAN differential signal, CAN_H and CAN_L.

[3] ΔX is the time interval from power-on to sending the first frame valid message

5.3.2 Current Consumption Test Curve

Figure 5-9 -40°C Current Consumption Test Curve

Figure 5-11 +105°C Current Consumption Curve

5.3.3 Low-Current Accuracy Test Curve

Figure 5-12-40°C Low-Current Test Accuracy@Min. Current Error

Figure 5-14 + 25°C Low-Current Test Accuracy@Min. Current Error

Figure 5-16 + 105°C Low-Current Test Accuracy@Min. Current Error

Figure 5-13-40°C Low-Current Test Accuracy@Max. Current Error

Figure 5-15 + 25°C Low-Current Test Accuracy@Max. Current Error

Figure 5-17 + 105°C Low-Current Test Accuracy@Max. Current Error

5.3.4 High-Current Accuracy Test Curve

Figure 5-18 -40°C High-Current Test Accuracy@Min. Current Error

Figure 5-20 +25°C High-Current Test Accuracy@Min. Current Error

Figure 5-19 -40°C High-Current Test Accuracy@Max. Current Error

 $Figure \, 5\text{-}21 \, \text{+}25^\circ \! C \, High\text{-}Current \, Test \, Accuracy @Max. \, Current \, Error$

Figure 5-23 +85°C High-Current Test Accuracy@Max. Current Error

6、Test Standards

Test No.	Test Standards	Test Items			
General insp	General inspection				
1	/	Appearance			
2	/	Dimension			
3	/	Weight			
4	/	Function Check			
Electrical lo	ads				
5	VW 80000	E-01 Long-term overvoltage			
6	VW 80000	E-02 Transient overvoltage			
7	VW 80000	E-03 Transient undervoltage			
8	VW 80000	E-04 Jump start			
9	VW 80000	E-05 Load dump			
10	VW 80000	E-06 Ripple voltage			
11	VW 80000	E-07 Slow decrease and increase of the supply voltage			
12	VW 80000	E-08 Slow decrease, quick increase of the supply voltage			
13	VW 80000	E-09 Reset behavior			
14	VW 80000	E-10 Brief interruptions			
15	VW 80000	E-11 Start pulses			
16	VW 80000	E-12 Voltage curve with vehicle electrical system control			
17	VW 80000	E-13 Pin interruption			
18	VW 80000	E-14 Connector interruption			
19	VW 80000	E-15 Reverse polarity			
20	VW 80000	E-16 Ground potential difference			
21	VW 80000	E-17 Short circuit in signal cable and load circuits			
22	VW 80000	E-18 Insulation resistance			
23	VW 80000	E-19 Quiescent current			
24	VW 80000	E-20 Dielectric strength			
25	/	Continuous power test			
26	ISO 7637-2:2011	CI pulse 1			
27	ISO 7637-2:2011	CI pulse 2a / 2b			
28	ISO 7637-2:2011	CI pulse 3a / 3b			
29	ISO 7637-2:2011	CI pulse 4			
30	ISO 7637-2:2011	CI pulse 5b			
31	ISO 10605:2008	ESD			
32	CISRP 25	Radiated emissions			
33	CISRP 25	Conducted emissions			
34	ISO 11452-2	Radiated immunity			
35	ISO 11452-4	Bulk current injection			

Test No.	Test Standards	Test Items			
Climatic load	ds				
36	VW 80000	K-01 High-/low-temperature aging			
37	VW 80000	K-02 Incremental temperature test			
38	VW 80000	K-03 Low-temperature operation			
39	VW 80000	K-05 Thermal shock (component).			
40	VW 80000	K-14 Damp heat, constant			
41	VW 80000	L-02 Service life test - high-temperature durability testing			
42	VW 80000	L-03 Service life test – Temperature cycle durability testing			
43	IEC 60068-2-30	Dew test			
44	GB/T 2423.34	Composite temeperature & humidity cyclic test			
Mechanical l	oads				
45	VW 80000	M-01 Free fall			
46	VW 80000	M-04 Vibration test			
47	VW 80000	M-05 Mechanical shock			
48	VW 80000	M-08 Protection against foreign bodies - IP0x to IP4x, A, B, C, D			
Regulation V	Regulation Validation				
49	GB/T 30512-2014	Requirements for prohibited substances on automobiles			
50	UL-94:2016	Vertical Burning Test			

7、Communication

7.1 CAN Protocol

CB350M6918A applies CAN2.0 A/B communication protocol and communicates through data frame. The data length of message frame is between 1-8 bytes. The default CAN speed is 500Kbps. 1Mbps/250Kbps are also available. There are two kinds of data frame, standard frame and extended frame, as shown in Figure 7-1 and Figure 7-2. Standard frame has an ID of 11 bytes, and the extended frame has an ID of 29 bytes. The defaulted data frame is standard frame, which can be adjusted to the extended frame. The defaulted data format is Motorola, which can be adjusted to Intel.

Figure 7-1 Standard Frame

Figure 7-2 Extended Frame

7.2 Data Frame

The data frame of CB350M6918A can apply multiple data formats, as shown in Table 7-1. Among them, both formats A and B are composed of two frames of messages, which transmit real-time current and real-time temperature. Both formats C and D are composed of one frame of message. Format C transmits real-time current and real-time temperature in one frame of message. Format D only transmits real-time current. The data frame format defaults to format A.

Data Format Type	Data Frame Content	CANID ^[1]	Data Length	Characteristics
Format A	Real-Time Current	0x0301	6	32-bit current value is a signed integer. Available Unit: mA/μA
	Real-Time Temperature	0x0325	6	32-bit temperature value is a signed integer, in 0.1°C
Format D	Real-Time Current	0x03C2	8	24-bit current value is an unsigned integer with offset 0x800000, in mA
Format B	Real-Time Temperature	0x06C2	8	8-bit NTC temperature value is a signed short integer, in °C 8-bit MCU temperature value is a signed short integer, in °C
Format C	Real-Time Current & Temperature	0x03C2	8	24-bit current value is an unsigned integer with offset 0x800000, in mA 16-bit temperature value is a signed short integer. Unit: 0.1 ℃
Format D	Real-Time Current	0x03C0	8	32-bit current value is an unsigned integer with offset 0x80000000, in mA

Table 7-1	Message	Frame D	ata Format
-----------	---------	---------	------------

[1] The CAN ID in the above table are default and can be modified by commands (refer to the relevant application documents for details)

7.2.1 Format A

Format A consists of current data frame and temperature data frame, each with a 4-bit cyclic counter and a 2-bit module exception flag. In addition, the current data frame has an 8-bit current channel flag, a 32-bit current value, a 1-bit unit selection and a 1-bit reserved bit. The temperature data frame has an 8-bit temperature channel flag, a 32-bit temperature value and a 2-bit reserved bit. The details of the message are shown in Table 7-2, Examples of message and decoding information are shown in Table 7-3 and Table 7-4.

Table 7-2. Format A Message

Frame Type	CANID	Length	byte0	byte1	byte2	byte3	byte4	byte5
Current (mA/µA)	0x0301	6	0x00 ⁽¹⁾	B[7]: Reserved Bit ^[2] B[6]: Current Unit ^[3] B[5]: Measurement Error Flag ^[4] B[4]: Overcurrent Flag ^[5] B[3:0]: Cyclic Counter ^[6]		32-bit S Current	igned Value ^{[7}]
Temperature (0.1°C)	0x0325	6	0x04 ^[8]	B[7:6]: Reserved Bit ^[2] B[5]: Overtemperature Flag of Shunt ^[9] B[4]:Overtemperature Flag of PCBA ^[10] B[3:0]: Cyclic Counter ^[6]		32-bit S nperatu	igned Ire Valu	e [11]

[1] Current Channel Flag.

[2] Reserved bit, default is 0.

[3] Current Unit, 0: mA; 1: μA

[4] Measurement error flag, active when the ADC fault is detected, indicates that the current value is invalid. When alarming, the current sensor still sends and receives data messages, but the current value in the message is invalid. The measurement deviation may exceed the range specified in the technical specification.

[5] Overcurrent error flag. Default is inactive. It can be defined by the user.

[6] Cyclic Counter, 0x0-0xF cycle count value.

[7] 32-bit current data uses big-endian by default. The high bit is followed by the low bit. It is a signed integer.

[8] Temperature Channel Flag.

[9] Overtemperature Flag of Shunt, active when the shunt temperature is detected to be more than 150 °C, indicates that the sensor may have no message output or low accuracy. When alarming, the current sensor can still send and receive data messages in a short time, and the current value in the message is valid. If overtemperature for a long time, the performance of current sensor can be damaged. At this time, it is recommended to limit the output power of BMS.

[10] Overtemperature Flag of PCBA, active when the board temperature is detected to be more than 125 °C, indicates that the sensor may have no message output or low accuracy. When alarming, the current sensor can still send and receive data messages in a short time, and the current value in the message is valid. If overtemperature lasts for a long time, the performance of current sensor can be damaged. Then, it is recommended to limit the output power of BMS.

[11] 32-bit temperature data uses big-endian by default. The high bit is followed by the low bit. It is a signed integer. Unit: 0.1 °C

		,		-		
Example	D B 0	DB1	D B2	D B3	DB4	DB5
1	0x00	0x00	0x00	0x00	0x03	0xE8
2	0×00	0x00	0xFF	0×FF	0xFC	0x18
3	0x04	0x00	0x00	0x00	0x01	0x0A
4	0x04	0x00	0xFF	0xFF	0xFE	0xF6

Table 7-3. Examples of Format A Message Frame

Table 7-4. Decoding Information of Table 7-3 Examples

Example	Byte	Value	Message
	D B0	0x00	Current Channel Flag.
1	DB1	0x00	Reserved bit 0, unit: mA, no measurement error, cycle sequence 0
	D B2- D B5	0x000003E8	Current: 1000mA, i.e. 1A
	D B0	0x00	Current Channel Flag.
2	DB1	0x00	Reserved bit 0, unit: mA, no measurement error, cycle sequence 0
	D B2- D B5	0xFFFFFC18	Current: -1000mA, i.e1A
	D B0	0x04	Temperature Channel Flag.
3	DB1	0x00	Reserved bit 0, Shunt temperature $<\!150^\circ\!C$, PCBA temperature $<\!125^\circ\!C$, cycle sequence 0
	D B2- D B5	0x000010A	The Temperature is + 26.6 °C
	D B0	0x04	Temperature Channel Flag.
4	DB1	0x00	Reserved bit 0, Shunt temperature $<\!150^\circ\!C$, PCBA temperature $<\!125^\circ\!C$, cycle sequence 0
	D B2- D B5	0xFFFFFEF6	The Temperature is - 26.6 °C

7.2.2 Format B

Format B consists of current data frame and temperature data frame, each with a 4-bit cyclic counter. In addition, the current data frame has a 24-bit current value, a 2-bit flag bit, an 8-bit software version, an 8-bit check bit and an 18-bit reserved bit. The temperature data frame has an 8-bit temperature value, a 4-bit status bit, an 8-bit check bit and a 32-bit reserved bit. The details of the message are shown in Table 7-5, Examples of message and decoding information are shown in Table 7-6 and Table 7-7.

			Table 7-5. F	ormat B I	Message					
Frame Type	CANID	Length	byte0	byte1	byte2	byte3	byte4	byte5	byte6	byte7
Current (mA)	0x03C2	8	B[7:4]: Cyclic Counter ^[1] B[3:2]:Reserved Bit ^[2] B[1]: Hardware Fault Flag ^[3] B[0]:ADC Conversion Error ^[4]	24-I Cu Offs	bit Unsigr urrent Val et 0 x 8000	ned ue)00 ^[5]	Reserve	d Bit ^[2]	Software Version	CRC-8Check SAEJ1850 ^[6]
Temperature (°C)	0x06C2	8	B[7:4]: Cyclic Counter ^[1] B[3]:SHUNT Over Temperature Flag ^[7] B[2]:PCBA Over Temperature Flag ^[8] B[1]:SHUNT Temperature measurement Error Flag. ^[9] B[0]:PCBA Temperature measurement Error Flag ^[10]	SHUNT (°C) [11]	PCBA (°C) [12]		Reserv	ed Bit ^[2]		CRC-8Check SAEJ1850 ^[6]

wight @ Changher CA D Flast 1 C 111

CB350M6918A

CB_AMC_UM - SEPTEMBER 2023

[1] Cyclic Counter, 0x0-0xF cycle count value.

[2] Reserved bit, default is 0.

[3] Hardware Fault Flag, active when a hardware fault is detected, indicates that the ADC may have a fault.

[4] ADC conversion error flag. When ADC sampling timeout exceeded, indicating the present current value is invalid. When flag occurs,

the sensor can still receive and send message, but the current value of the message is invalid. The measured value may be out of the specifications range.

[5] 24-bit current data uses big-endian by default. The high bit is followed by the low bit. It is an unflaged integer. Unit: mA

The actual value is expressed as V=D-0x800000. D is the value in the message.

[6] CRC-8 Check generates a check code for the first 7 bytes of data.

 $[7] SHUNT over temperature flag. When measured temperature of SHUNT is over 150 ^{\circ}C, it will be no message or measurement accuracy decreased.$

 $When flag \, occurs, the \, sensor \, can \, still \, receive \, and \, send \, message \, in \, a \, short \, period \, and \, the \, current \, value \, in \, the \, message \, is \, normal.$

If the sensor is over temperature for a long time, it could affect the functions of the sensor. It is recommended to derate BMS output power.

[8] PCBA over temperature flag. When measured temperature of PCBA is over 125°C, it will be no message or measurement accuracy decreased.

When flag occurs, the sensor can still receive and send message in a short period and the current value in the message is normal.

If the sensor is over temperature for a long time, it could affect the functions of the sensor. It is recommended to derate BMS output power.

[9] SHUNT temperature measurement error flag. Sign sets when SHUNT temperature measurement is error.

 $[10] \, {\sf PCBA} \, temperature \, measurement \, error \, flag. \, {\sf Sign} \, sets \, when \, {\sf SHUNT} \, temperature \, measurement \, is \, error.$

[11] SHUNT temperature, 8-bit temperature data by default unflaged integers. Unit: °C. The actual value expression is V=D-55. D is the value in the message. [12] PCBA temperature, 8-bit temperature data by default unflaged integers. Unit: °C. The actual value expression is V=D-55. D is the value in the message.

	Table 7-6. Examples of Format B Message Frame							
Example	D B 0	DB1	DB2	D B 3	DB4	DB5	DB6	DB7
1	0x00	0x80	0x03	0xE8	0x00	0x00	0x64	0x83
2	0x00	0x7F	0xFC	0x18	0x00	0x00	0x64	0xAB
3	0x00	0x1A	0x1A	0x00	0x00	0x00	0x00	0xD5
4	0x00	0xE6	0xE6	0x00	0x00	0x00	0x00	0x47

Example	Byte	Value	Message
	DB0	0x00	Cycle sequence 0, reserved bit 0, no hardware fault, No ADC conversion error
	DB1-DB3	0x8003E8	Current: 1000mA, i.e. + 1A
1	DB4-DB5	0x0000	Reserved bit 0
	DB6	0x64	Software version is V 1.00
	DB7	0x83	CRC-8 Check Value
	DB0	0x00	Cycle sequence 0, reserved bit 0, no hardware fault, No ADC conversion error
	DB1-DB3	0x7FFC18	Current: -1000mA, i.e1A
2	DB4-DB5	0x0000	Reserved bit 0
	DB6	0x64	Software version is V 1.00
	DB7	0 x A B	CRC-8 Check Value
	DB0	0x00	Cycle sequence 0, normal SHUNT & PCBA temperature,normal SHUNT、PCBA temperature
	DB1	0x1A	SHUNT :+ 26°C
3	DB2	0x1A	PCBA : + 26°C
	DB3-DB6	0x00000000	Reserved bit 0
	DB7	0xD5	CRC-8 Check Value
	DB0	0x00	$Cyclesequence0,normalSHUNT\&\mathsf{PCBAtemperature,normalSHUNT,\mathsf{PCBAtemperature}$
	DB1	0xE6	SHUNT :- 26°C
4	DB2	0xE6	PCBA :- 26°C
	DB3-DB6	0x0000000	Reserved bit 0
	DB7	0x47	CRC-8 Check Value

7.2.3 Format C

Format C consists of one frame of message, including a 24-bit current value, an 16-bit temperature value, a 4-bit cyclic counter, a 2-bit status bit, a 1-bit flag bit, an 8-bit check bit and a 9-bit reserved bit. The details of the message are shown in Table 7-8, Examples of message and decoding information are shown in Table 7-9 and Table 7-10.

Table 7-8. Format C Message

Frame Type	CANID	Length	byte0	byte1	byte2	byte3	byte4	byte5	byte6	byte7
Current (mA) Temperature (0.1°C)	0x03C2	8	B[7:4]: Cyclic Counter ^[1] B[3:2]: Malfunction Status ^[2] B[1]: Hardware Fault Flag ^[3] B[0]:Reserved Bit ^[4]	24- Curre 0	bit Unsign nt Value x800000	ned Offset	16-bit S Tempe Valı	igned erature ue ^[6]	Reserved Bit ⁽⁴⁾	CRC-8Check SAEJ1850 ^[7]

[1] Cyclic Counter, 0x0-0xF cycle count value.

[2] Malfunction Status, '0': Normal; '1': ADC Conversion Error; '2': Current exceeds 1550A; '3': Shunt temperature exceeds 150 °C or PC BA temperature exceeds 125 °C.

[3] Hardware Fault Flag, active when a hardware fault is detected, indicates that the ADC may have a fault.

[4] Reserved bit, default is 0.

[5] 24-bit current data uses big-endian by default. The high bit is followed by the low bit. It is an unsigned integer. Unit: mA

The actual value is expressed as V=D-0x800000. D is the value in the message. [6] 16-bit temperature data uses big-endian by default. The high bit is followed by the low bit. It is a signed integer. Unit: °C.

[7] CRC-8 Check generates a check code for the first 7 bytes of data.

Table 7-9. Example	s of Format C	Message Frame
--------------------	---------------	---------------

Example	D B 0	DB1	D B2	D B3	DB4	DB5	DB6	DB7
1	0x00	0x80	0x03	0xE8	0x01	0x0A	0x00	0x2E
2	0x00	0x7F	0xFC	0x18	0xFE	0xF6	0x00	0x9D

Table 7-10. Decoding Information of Table 7-9 Examples

Example	Byte	Value	Message
	D B0	0x00	Cycle sequence 0, normal function, no hardware fault, reserved bit 0
	D B1- D B3	0x8003E8	Current: 1000mA, i.e. + 1A
1	D B4- D B5	0x010A	The Temperature is + 26.6 °C
	D B6	0x00	Reserved bit 0
	DB7	0x2E	CRC-8 C heck Value
	D B0	0x00	Cycle sequence 0, normal function, no hardware fault, reserved bit 0
	D B1- D B3	0x7FFC18	Current: -1000mA, i.e1A
2	D B4- D B5	0xFEF6	The Temperature is - 26.6 °C
	DB6	0x00	Reserved bit 0
	DB7	0x9D	CRC-8 Check Value

7.2.4 Format D

Format D consists of one frame of message, including a 32-bit current value, a 1-bit flag bit, a 7-bit status bit, an 8-bit software version, a 16-bit reserved byte and no temperature value. The details of the message are shown in Table 7-11, Examples of message and decoding information are shown in Table 7-12 and Table 7-13.

Table 7-11	. Format D) Message
------------	------------	-----------

Frame Type	CANID	Length	byte0	byte1	byte2	byte3	byte4	byte5	byte6	byte7
Current (mA)	0x03C0	8	3	2-bit Uns Current fset 0 x80	igned Value 000000 ^[1]		B[0]:Error Flag ^[2] B[7:1]: Error Status ^[3]	Reserv	ed Bit ^[4]	Software Version

[1] 32-bit current data uses big-endian by default. The high bit is followed by the low bit. It is an unsigned integer. Unit: mA. The actual value is expressed as V=D-0x80000000. D is the value in the message.

[2] Error Flag, '0': Normal; '1': Error;

[3] Error Status, 0x64: no error; 0x50: ADC hardware error; 0x51: ADC conversion error; 0x60: Temperature exceeds the limit (current value remains measured).

[4] Reserved bit, default is 0.

Table 7-12. Examples of Format D Message Frame

Example	D B 0	DB1	D B 2	D B3	DB4	DB5	DB6	DB7
1	0x080	0x00	0x03	0xE8	0xC8	0x00	0x00	0x64
2	0x7F	0xFF	0xFC	0x18	0xC8	0x00	0x00	0x64

Copyright @ Shenzhen C & B Electronics Co., Ltd

Table 7-13. Decoding Information of Table 7-12 Examples

Example	Byte	Value	Message
	D B0- D B3	0x800003E8	Current: 1000mA, i.e. 1A
1	DB4	0xC8	N ormal, no error
	D B5 - D B6	0x0000	Reserved bit 0
	DB7	0x64	Software version is V 1.00
	D B0- D B3	0x7FFFFC18	Current: -1000mA, i.e1A
2	DB4	0xC8	N ormal, no error
2	D B5 - D B6	0x0000	Reserved byte 0
	DB7	0x64	Software version is V 1.00

7.3 Bus Topology

CB350M6918A can be applied to a bus-type topology and transmits network information to each node through the bus, as shown in Figure 7-3.

Figure 7-3 CAN Bus Topology

7.4 Measuring Mode

7.4.1 Time Interval + Command Trigger Mode

The sensor samples data at a fixed time interval set by the system and sends message to the CAN bus. At the same time, It can also respond to the trigger command. In the sampling period, the measurement will be active immediately when the trigger command is received and sends message to CAN bus. No need to wait for next sampling interval. As shown in Figure 7-4.

After the sensor receives the trigger command, if it is sampling or sending CAN message, the present trigger command will be ignored. When the command is valid, a sampling and sending process will be started, and the time interval T for the next sending will be automatically calculated from the moment of this trigger. As Figure 7 - 4 shown, there is a delay between the sensor receiving a valid trigger command and sending the CAN message, which is less than 1 ms.

7.4.2 Command Triggered Mode

Under this mode, the sensor will not automatically send message, but keep sampling, calculating and filtering data at a fixed time interval. The sensor will send the recent sampling data to CAN bus and reset the s tart of time interval when a valid command is received from the host, as Figure 7 - 5 shown.

As Figure 7 - 5 shown, the sensor sends data to the CAN bus after receiving at rigger command from the host, with a delay of less that 1 ms between receiving the command and sending the data.

8、Mechanical Structure

8.1 D imensions

Figure 8.1 Structure Diagram

8.2 Copper Bar Connection

- Recommended Bolts :M8
- Recommended Torque:15- 20Nm
- Recommended Width * Thickness of Copper Bar:24mm*3mm
- Recommended Length of Overlap between Shunt and Copper Bar:20mm
- Do not use a flat washer between the copper bar and the shunt
- Keep the surface of shunt and copper bar clean and free of scratches

Figure 8-2. CB350M6918A Copper Bar Connection Diagram

8.3 Connector

Connector	Manufacturer	Pin Count	Part #
Male Connector ^[1]	Molex	4	5600200420
Recommended Female Connector ⁽²⁾	Molex	4	5601230400

Figure 8-3. Male Connector

Figure 8-4. Female Connector (Wire end reference)

[1] For more information about male connector, please refer to Molex datasheet: https://www.molex.com/pdm_docs/sd/5600200420_sd.pdf [2] For more information about female connector, please refer to Molex datasheet : https://www.molex.com/pdm_docs/sd/5601230400_sd.pdf

8.4 Connector Definition

Pin No.	Description
Pin4	VCC
Pin3	CAN_L
Pin2	CAN_H
Pin1	GND

Figure 8-5. Male Connector Molex5600200420

9、Typical Applications

CB350M6918A^[1] is used for accurate current measurement in key system. It is recommended that the current sensor connects to the circuit of positive or negative electrode of high-voltage end^[2] as shown in Figure 9-1 and Figure 9-2, to sample the current in the main circuit. The high and low voltage ends are galvanic isolated inside the sensor. It is recommended that the low voltage end connects to the battery management system, as shown in Figure 9-3, for real-time and accurate reporting of current data in key system.

Figure 9-1. Recommended Use of Positive Electrode of High-Voltage End

Figure 9-2. Recommended Use of Negative Electrode of High-Voltage End

Figure 9-3. Recommended Use of

Low-Voltage End

[1] The "+" on the CB350M8536A current sensor housing is the direction of current entry, that is, the positive current direction.

[2] The high voltage electrode is installed as shown in the figure. The operating condition indicated by the sensor output value is: When the sensor outputs positive value, the battery pack is discharging;

When the sensor outputs negative value, the battery pack is charging.

10、Storage & Packaging

10.1 Storage

- Recommended storage at room temperature.
- The storage environment shall be clean, tidy, dry and free of harmful gases, and the packaging case shall be protected from direct sunlight.
- Anti-static bracelet or anti-static gloves shall be worn during installation, storage and handling.

10.2 Packaging

10.2.1 General Information

PackagingElement	Specifications				
SN P ^[1]	150				
Container Name	Carton				
Container Size	480*410*282	mm			
Unit Weight of Finished Product	42±5	g			

[1] SNP, Standard Number of Package

10.2.2 Auxiliary Materials Information

N o.	Materials	Size L*W *H(mm)	Quantity
1	50-Grid EPE Tray	468*398*86	3
2	EPE Tray Cover	460*390*10	1
3	Anti-Static PE Bag	200*150	150
4	Anti-Static PE Accordion Bag	900*510	1

Figure 10-1. Carton Diagram

Figure 10-2. Structure Diagram of EPE

11、Part Number Information

	СВ	350	M	6918	A	1	S	S	NN
Series									
CB: C& B Current Sensor									
Rated Current									
350: 350A 600: 600A 1000: 1000A									
Tolerance									
B: 0.05% F: 0.1% L: 0.2% M: 0.5% K: 1%									
Shunt Size									
6918:69mm×18mm 8518:85mm×18mm 8436:84mm×36mm 8536:85mm×36mm									
Application Grade									
A: CAN Automotive T: CAN Industrial T: 485 Industrial									
Туре									
0: Standard, Thickness 4mm 1: Standard, Thickness 3mm 2: Customized									
Special Byte									
Standard K:25μΩ S:50μΩ P:100μΩ J:150μΩ									
Customized Custom Byte, 0~9, A~Z									
Special Byte									
Standard S:CAN Terminal Resistor N:No CAN Terminal Resistor									
Customized Custom Byte , 0~ 9 , A ~ Z									
Code									
NN : 00~99 or Blank									

For more performance options and other r elevant information, please r efer to the o fficial website: https://en.resistor.today/

CB600F8536A Series, Automotive, 0.1% Tolerance Operating Temperature -40°C~+105°C Shunt Based Current Sensor

1、Characteristics

- Current Sensing: Measurement Range: -20000A~+20000A - Continuous Operating Range: -600A~+600A
- Measurement Accuracy: ±0.1% (MAX)
- Resolution: 1mA
- Temperature Sensing: Measurement Range: -50°C~+150°C
- Measurement Error: ±3°C (MAX)
- Resolution: 0.1°C
- Communication Protocol:CAN2.0 A/B
- Selectable Data Format
- Configurable CAN ID
- Configurable CAN Speed: 250Kbps/500Kbps/1Mbps
- Supply Voltage:6V~18V
- Operating Temperature Range: -40°C~+105°C
- Power Consumption: ≤384mW @12VDC
- Galvanic Isolation: 3000VAC

2、Applications

- Automotive Current Monitor
- Grid Energy Storage
- UPS
- Charging Station

3、Introduction

CB600F8536A current sensor is an automotive current sensing module, which can be used to measure bidirectional DC current. Featuring high accuracy, low power consumption, wide operating temperature range, excellent response speed, temperature stability and anti-interference ability.

The sensor is designed based on low-TCR shunt, adopts highprecision ADC, communicates through CAN2.0 A/B protocol, and has large ranges of current and temperature measurement capabilities, and current compensation at whole temperature range.

The sensor meets the operating temperature range of -40°C~+105°C, can apply to the continuous operating current of -600A~+600A at the whole temperature range, and the current measurement accuracy is no more than \pm 0.1% in the range of +50A~+600A or -600A~-50A.

Power supply of CB600F8536A current sensor is from 6VDC to 18VDC. Its power consumption is controlled below 384mW (12VDC), and it can realize complete high-low voltage isolation, which can be applied to the main positive electrode or the main negative electrode of the battery system.

Sensor Information

Part Number	Shunt Thickness	Resistance	Terminal Resistor
CB600F8536A1SS00	3mm	50μΩ	Yes
CB600F8536A1SN00	3mm	50μΩ	No

[1] For part numbers not included in the table, please contact us for technical support.

Typical Application

で記録 では、 This datasheet provides CB600F8536A current sensor reliability data and design suggestions. For the latest information of the datasheet and more RESI products, please visit www.resistor.today. Before actual design, please refer to the latest version of CB600F8536A current sensor datasheet.

Content

1. Characteristics 23
2. Applications 23
3.Introduction 23
4. Revision 24
5. Specifications 25
5.1 Limit Parameters 25
5.2 General Parameters 25
5.3 Typical Characteristic Curve 27
6. Test Standards31
7.Communication33
7.1 CAN Protocol33
7.2 Data Frame34

7.3 Bus Topology		8
7.4 Measuring Mode	3	8
8、Mechanical Structure	4	0
8.1 Dimensions		0
8.2 Copper Bar Connection	4	0
8.3 Connector	4	0
8.4 Connector Definition	4	1
9、Typical Applications		2
10、Storage & Packaging	4	3
10.1 Storage	4	3
10.2 Packaging	4	3
11、Part Number Information	4	4

4、Revision

Date	Revised Content	Note
2023.01	/	A0
2023.02	Revised maximum supply voltage from 26V to 18V.	A1
2023.04.06	Flat washer is removed in Copper Bar Connection Diagram	A2
2023.08.21	Change the product packaging	A3
2023.09.14	Modify limit parameters of CAN, format B of data frame, order of connector pin and start-up time test curve	A4

5、Specifications

5.1 Limit Parameters

Note: Product will affect its reliability and cause unexpected permanent damage if operating under limit parameters for long time.

Parameter	Condition	Min.	Typical	Max.	Unit
Supply Voltage				30	VDC
	±1500A			30	S
	±1800A			25	S
Current	±2500A			15	S
Measurement Range	±3000A			10	s
	±20000A			50	ms
CANInterface	Configured 120 Ω Terminal Resistor (Continuous Power Supply)			6	V
CAN IIIterrace	ESD			8	KV
Operating Temperature		-40		105	°C
Storage Temperature		-40		125	°C
Humidity				95	%RH

5.2 General Parameters

Test Conditions: Ambient Temperature 25 °C (Unless Otherwise Noted)

Parameter	Condition	Min.	Typical	Max.	Unit	
Power Supply						
Supply Voltage		6	12	18	VDC	
	6V	20	26	32	mA	
Operating C urrent	12V	20	26	32	mA	
	18V	20	26	32	mA	
	6V	120	150	192	mW	
Power Consumption	12V	240	300	384	mW	
	18V	360	450	576	mW	
Start-Up Time	Start-Up Time Required time from power-on to sending the first frame 100					
Current Measurement (- 40°	C~+105°C)					
	-50A~+50A		±30	±50	mA	
Accuracy	+ 50A~ + 600A or - 600A~ - 50A			±0.1	%	
heedracy	+ 600A~ + 3000A or - 3000A~ - 600A		±0.5	±1	%	
	+ 3000A~ + 20000A or - 20000A~ - 3000A		±1	±5	%	
	-600A~+600A		Continuous			
Duration	±1500A			25	s	
Duration	±3000A			5	S	
	±20000A			40	ms	
Possiution	-600A~+600A		1		mA	
Resolution	>600A or<-600A		10		mA	
Linearity	-600A~+600A		±0.01		%	
Linearity	>600A or<-600A		±0.1		%	

CB600F8536A

CB_AMC_UM - SEPTEMBER 2023

Test Conditions: Ambient Temperature 25 °C (Unless Otherwise Noted)

Parameter Condition		Min.	Typical	Max.	Unit
Temperature Measurement					
M easurement Range		-50		+150	°C
M easurement Error	-50°C~+150°C	- 3		+ 3	°C
Resolution			0.1		°C
Power & Temperature Rise					
DCImpedance		45	50	55	μΩ
Inductance				3	nH
Temperature Rise	±600A@25°C Copper Bus Bar 40mm*3mm, 15Nm			60	°C
	±600A@85°C Copper Bus Bar 40mm*3mm, 15Nm			60	°C
Communication					
Protocol	CAN2.0A/B				
Communication Speed		250	500	1000	Kbps
Terminal Desister	With Terminal Resistor	108	120	132	Ω
	W ithout Terminal Resistor				
Output Rate of Current Message		10	10	1000	ms
Output Rate of Temperature Message		10	100	1000	ms
Isolation					
Galvanic Isolation			3000		VAC
Creepage Distance			6		mm
Clearance			4.5		mm

5.3 Typical Characteristic Curve

5.3.1 Start-Up Time Test Curve

Figure 5-1 Sample1 Start-Up Time Test Curve

Figure 5-3 Sample3 Start-Up Time Test Curve

Figure 5-5 Sample5 Start-Up Time Test Curve

Figure 5-2 Sample2 Start-Up Time Test Curve

Figure 5-4 Sample4 Start-Up Time Test Curve

Figure 5-6 Sample6 Start-Up Time Test Curve

Figure 5-8 Sample8 Start-Up Time Test Curve

[1] A channel acquires data of power supply, VCC and GND.

[2] B channel acquires data of CAN differential signal, CAN_H and CAN_L.

[3] ΔX is the time interval from power-on to sending the first frame valid message

5.3.2 Operating Current Test Curve

Figure 5-9 + 25°C Operating Current Curve

5.3.3 O vercurrent Test Curve

Figure 5-12 + 25°C Overcurrent Test Curve

5.3.4 Low-Current Accuracy Test Curve

Figure 5-15 + 25°C Low-Current Test Accuracy@Min. Current Error

Figure 5-17 + 105°C Low-Current Test Accuracy@Min. Current Error

Figure 5-14-40°C Low-Current Test Accuracy@Max. Current Error

Figure 5-16 + 25°C Low-Current Test Accuracy@Max. Current Error

Figure 5-18 + 105°C Low-Current Test Accuracy@Max. Current Error

5.3.5 High-Current Accuracy Test Curve

High-Current Test Accuracy@Min. Current Error

High-Current Test Accuracy@Max. Current Error

6、Test Standards

Test No.	Test Standards	Test Items					
General insp	General inspection						
1	/	Appearance					
2	/	Dimension					
3	/	Weight					
4	/	Function Check					
Electrical lo	Electrical loads						
5	VW 80000	E-01 Long-term overvoltage					
6	VW 80000	E-02 Transient overvoltage					
7	VW 80000	E-03 Transient undervoltage					
8	VW 80000	E-04 Jump start					
9	VW 80000	E-05 Load dump					
10	VW 80000	E-06 Ripple voltage					
11	VW 80000	E-07 Slow decrease and increase of the supply voltage					
12	VW 80000	E-08 Slow decrease, quick increase of the supply voltage					
13	VW 80000	E-09 Reset behavior					
14	VW 80000	E-10 Brief interruptions					
15	VW 80000	E-11 Start pulses					
16	VW 80000	E-12 Voltage curve with vehicle electrical system control					
17	VW 80000	E-13 Pin interruption					
18	VW 80000	E-14 Connector interruption					
19	VW 80000	E-15 Reverse polarity					
20	VW 80000	E-16 Ground potential difference					
21	VW 80000	E-17 Short circuit in signal cable and load circuits					
22	VW 80000	E-18 Insulation resistance					
23	VW 80000	E-19 Quiescent current					
24	VW 80000	E-20 Dielectric strength					
25	/	Continuous power test					
26	ISO 7637-2:2011	CI pulse 1					
27	ISO 7637-2:2011	CI pulse 2a / 2b					
28	ISO 7637-2:2011	CI pulse 3a / 3b					
29	ISO 7637-2:2011	CI pulse 4					
30	ISO 7637-2:2011	CI pulse 5b					
31	ISO 10605:2008	ESD					
32	CISRP 25	Radiated emissions					
33	CISRP 25	Conducted emissions					
34	ISO 11452-2	Radiated immunity					
35	ISO 11452-4	Bulk current injection					

Test No.	Test Standards	Test Items				
Climatic loads						
36	VW 80000	K-01 High-/low-temperature aging				
37	VW 80000	K-02 Incremental temperature test				
38	VW 80000	K-03 Low-temperature operation				
39	VW 80000	K-05 Thermal shock (component).				
40	VW 80000	K-14 Damp heat, constant				
41	VW 80000	L-02 Service life test - high-temperature durability testing				
42	VW 80000	L-03 Service life test – Temperature cycle durability testing				
43	IEC 60068-2-30	Dew test				
44	GB/T 2423.34	Composite temeperature & humidity cyclic test				
Mechanical l	oads					
45	VW 80000	M-01 Free fall				
46	VW 80000	M-04 Vibration test				
47	VW 80000	M-05 Mechanical shock				
48	VW 80000	M-08 Protection against foreign bodies - IP0x to IP4x, A, B, C, D				
Regulation Validation						
49	GB/T 30512-2014	Requirements for prohibited substances on automobiles				
50	UL-94:2016	Vertical Burning Test				

7、Communication

7.1 CAN Protocol

CB600F8536A applies CAN2.0 A/B communication protocol and communicates through data frame. The data length of message frame is between 1-8 bytes. The default CAN speed is 500Kbps. 1Mbps/250Kbps are also available. There are two kinds of data frame, standard frame and extended frame, as shown in Figure 7-1 and Figure 7-2. Standard frame has an ID of 11 bytes, and the extended frame has an ID of 29 bytes. The defaulted data frame is standard frame, which can be adjusted to the extended frame. The defaulted data format is Motorola, which can be adjusted to Intel.

Figure 7-1S tandard Frame

Figure 7-2 Extended Frame

7.2 Data Frame

The data frame of CB600F8536A can apply multiple data formats, as shown in Table 7-1. Among them, both formats A and B are composed of two frames of messages, which transmit real-time current and real-time temperature. Both formats C and D are composed of one frame of message. Format C transmits real-time current and real-time temperature in one frame of message. Format D only transmits real-time current. The data frame format defaults to format A.

Data Format Type	Data Frame Content	CANID ^[1]	Data Length	Characteristics
Format A	Real-Time Current	0x0301	6	32-bit current value is a signed integer. Available Unit: mA/μA
	Real-Time Temperature	0x0325	6	32-bit temperature value is a signed integer, in 0.1°C
Format D	Real-Time Current	0x03C2	8	24-bit current value is an unsigned integer with offset 0x800000, in mA
Formatio	Real-Time Temperature	0x06C2	8	8-bit NTC temperature value is a signed short integer, in °C 8-bit MCU temperature value is a signed short integer, in °C
Format C	Real-Time Current & Temperature	0x03C2	8	24-bit current value is an unsigned integer with offset 0x800000, in mA 16-bit temperature value is a signed short integer. Unit: 0.1 ℃
Format D	Real-Time Current	0x03C0	8	32-bit current value is an unsigned integer with offset 0x80000000, in mA

 $\label{eq:commands} [1] The CAN \ ID in the above table are default and can be modified by commands (refer to the relevant application documents for details)$

7.2.1 Format A

Format A consists of current data frame and temperature data frame, each with a 4-bit cyclic counter and a 2-bit module exception flag. In addition, the current data frame has an 8-bit current channel flag, a 32-bit current value, a 1-bit unit selection and a 1-bit reserved bit. The temperature data frame has an 8-bit temperature channel flag, a 32-bit temperature value and a 2-bit reserved bit. The details of the message are shown in Table 7-2, Examples of message and decoding information are shown in Table 7-3 and Table 7-4.

Table 7-2. Format A Message

Frame Type	CANID	Length	byte0	byte1	byte2	byte3	byte4	byte5
Current (mA/µA)	0x0301	6	0x00 ^[1]	B[7]: Reserved Bit ^[2] B[6]: Current Unit ^[3] B[5]: Measurement Error Flag ^[4] B[4]: Overcurrent Flag ^[5] B[3:0]: Cyclic Counter ^[6]	32-bit Signed Current Value ^[7]]	
Temperature (0.1°C)	0x0325	6	0x04 ^[8]	B[7:6]: Reserved Bit ^[2] B[5]: Overtemperature Flag of Shunt ^[9] B[4]:Overtemperature Flag of PCBA ^[10] B[3:0]: Cyclic Counter ^[6]	32-bit Signed Temperature Valu		e ^[11]	

[1] Current Channel Flag.

[2] Reserved bit, default is 0.

[3] Current Unit, 0: mA; 1: μA

[4] Measurement error flag, active when the ADC fault is detected, indicates that the current value is invalid. When alarming, the current sensor still sends and receives data messages, but the current value in the message is invalid. The measurement deviation may exceed the range specified in the technical specification.

[5] Overcurrent error flag. Default is inactive. It can be defined by the user.

[6] Cyclic Counter, 0x0-0xF cycle count value.

[7] 32-bit current data uses big-endian by default. The high bit is followed by the low bit. It is a signed integer.

[8] Temperature Channel Flag.

[9] Overtemperature Flag of Shunt, active when the shunt temperature is detected to be more than 150 °C, indicates that the sensor may have no message output or low accuracy. When alarming, the current sensor can still send and receive data messages in a short time, and the current value in the message is valid. If overtemperature for a long time, the performance of current sensor can be damaged. At this time, it is recommended to limit the output power of BMS.

[10] Overtemperature Flag of PCBA, active when the board temperature is detected to be more than 125 °C, indicates that the sensor may have no message output or low accuracy. When alarming, the current sensor can still send and receive data messages in a short time, and the current value in the message is valid. If overtemperature lasts for a long time, the performance of current sensor can be damaged. Then, it is recommended to limit the output power of BMS.

[11] 32-bit temperature data uses big-endian by default. The high bit is followed by the low bit. It is a signed integer. Unit: 0.1 $^\circ$ C

			•	0		
Example	D B 0	DB1	D B2	DB3	DB4	D B 5
1	0×00	0x00	0×00	0×00	0x03	0xE8
2	0×00	0×00	0×FF	0×FF	0xFC	0x18
3	0x04	0x00	0x00	0x00	0x01	0x0A
4	0x04	0×00	0×FF	0×FF	0×FE	0xF6

Table 7-3. Examples of Format A Message Frame

Table 7-4. Decoding Information of Table 7-3 Examples

Example	Byte	Value	Message
	D B0	0x00	Current Channel Flag.
1	DB1	0x00	Reserved bit 0, unit: mA, no measurement error, cycle sequence 0
	D B2- D B5	0x000003E8	Current: 1000mA, i.e. 1A
	D B0	0x00	Current Channel Flag.
2	DB1	0x00	Reserved bit 0, unit: mA, no measurement error, cycle sequence 0
	D B2- D B5	0xFFFFFC18	Current: -1000mA, i.e1A
	D B0	0x04	Temperature Channel Flag.
3	DB1	0x00	Reserved bit 0, Shunt temperature $<\!150^\circ\!C$, PCBA temperature $<\!125^\circ\!C$, cycle sequence 0
	D B2- D B5	0x000010A	The Temperature is + 26.6 °C
	D B0	0x04	Temperature Channel Flag.
4	DB1	0x00	Reserved bit 0, Shunt temperature $<\!150^\circ\!C$, PCBA temperature $<\!125^\circ\!C$, cycle sequence 0
	D B2- D B5	0xFFFFFEF6	The Temperature is - 26.6 °C

7.2.2 Format B

Format B consists of current data frame and temperature data frame, each with a 4-bit cyclic counter. In addition, the current data frame has a 24-bit current value, a 2-bit flag bit, an 8-bit software version, an 8-bit check bit and an 18-bit reserved bit. The temperature data frame has an 8-bit temperature value, a 4-bit status bit, an 8-bit check bit and a 32-bit reserved bit. The details of the message are shown in Table 7-5, Examples of message and decoding information are shown in Table 7-6 and Table 7-7.

Frame Type	CANID	Length	byte0	byte1	byte2	byte3	byte4	byte5	byte6	byte7
Current (mA)	0x03C2	8	B[7:4]: Cyclic Counter ^[1] B[3:2]:Reserved Bit ^[2] B[1]: Hardware Fault Flag ^[3] B[0]:ADC Conversion Error ^[4]	24-bit Unsigned Current Value Offset 0 x800000 ⁽⁵⁾		Reserved Bit ^[2]		Software Version	CRC-8Check SAEJ1850 ^[6]	
Temperature (°C)	0x06C2	8	B[7:4]: Cyclic Counter ^[1] B[3]:SHUNT Over Temperature Flag ^[7] B[2]:PCBA Over Temperature Flag ^[8] B[1]:SHUNT Temperature measurement Error Flag. ^[9] B[0]:PCBA Temperature measurement Error Flag ^[10]	SHUNT (°C)	PCBA (°C) [12]		Reserv	ed Bit ^[2]		CRC-8Check SAEJ1850 ⁽⁶⁾

Table 7-5. Format B Message

CB600F8536A

CB_AMC_UM - SEPTEMBER 2023

[1] Cyclic Counter, 0x0-0xF cycle count value.

[2] Reserved bit, default is 0.

[3] Hardware Fault Flag, active when a hardware fault is detected, indicates that the ADC may have a fault.

[4] ADC conversion error flag. When ADC sampling timeout exceeded, indicating the present current value is invalid. When flag occurs,

the sensor can still receive and send message, but the current value of the message is invalid. The measured value may be out of the specifications range.

[5] 24-bit current data uses big-endian by default. The high bit is followed by the low bit. It is an unflaged integer. Unit: mA

The actual value is expressed as V=D-0x800000. D is the value in the message.

[6] CRC-8 Check generates a check code for the first 7 bytes of data.

[7] SHUNT over temperature flag. When measured temperature of SHUNT is over 150°C, it will be no message or measurement accuracy decreased.

When flag occurs, the sensor can still receive and send message in a short period and the current value in the message is normal.

If the sensor is over temperature for a long time, it could affect the functions of the sensor. It is recommended to derate BMS output power.

 $[8] \ {\sf PCBA} \ over \ temperature \ flag. \ When \ measured \ temperature \ of \ {\sf PCBA} \ is \ over \ 125 ^\circ {\sf C}, \ it \ will \ be \ no \ measurement \ accuracy \ decreased.$

When flag occurs, the sensor can still receive and send message in a short period and the current value in the message is normal.

If the sensor is over temperature for a long time, it could affect the functions of the sensor. It is recommended to derate BMS output power.

[9] SHUNT temperature measurement error flag. Sign sets when SHUNT temperature measurement is error.

 $[10] \, {\sf PCBA} \, temperature \, measurement \, error \, flag. \, {\sf Sign} \, sets \, when \, {\sf SHUNT} \, temperature \, measurement \, is \, error.$

[11] SHUNT temperature, 8-bit temperature data by default unflaged integers. Unit: °C. The actual value expression is V=D-55. D is the value in the message. [12] PCBA temperature, 8-bit temperature data by default unflaged integers. Unit: °C. The actual value expression is V=D-55. D is the value in the message.

Example	D B 0	DB1	DB2	DB3	DB4	DB5	DB6	DB7
1	0x00	0x80	0x03	0xE8	0x00	0x00	0x64	0x83
2	0x00	0x7F	0xFC	0x18	0x00	0x00	0x64	0xAB
3	0x00	0x1A	0x1A	0x00	0x00	0x00	0x00	0xD5
4	0x00	0xE6	0xE6	0x00	0x00	0x00	0x00	0x47

Table 7-6. Examples of Format B Message Frame

Table 7-7. Decoding Information of Table 7-6 Examples

Example	Byte	Value	Message
	DB0	0x00	Cycle sequence 0, reserved bit 0, no hardware fault, No ADC conversion error
	DB1-DB3	0x8003E8	Current: 1000mA, i.e. + 1A
1	DB4-DB5	0x0000	Reserved bit 0
	DB6	0x64	Software version is V 1.00
	DB7	0x83	CRC-8 Check Value
	DB0	0x00	Cycle sequence 0, reserved bit 0, no hardware fault, No ADC conversion error
	DB1-DB3	0x7FFC18	Current: -1000mA, i.e1A
2	DB4-DB5	0x0000	Reserved bit 0
	DB6	0x64	Software version is V 1.00
	DB7	0 x A B	CRC-8 Check Value
	DB0	0x00	Cycle sequence 0, normal SHUNT & PCBA temperature,normal SHUNT、PCBA temperature
	DB1	0x1A	SHUNT :+ 26°C
3	DB2	0x1A	PCBA : + 26°C
	DB3-DB6	0x00000000	Reserved bit 0
	DB7	0xD5	CRC-8 Check Value
	DB0	0x00	Cycle sequence 0, normal SHUNT & PCBA temperature, normal SHUNT、PCBA temperature
	DB1	0xE6	SHUNT :-26°C
4	DB2	0xE6	PCBA : -26°C
	DB3-DB6	0x00000000	Reserved bit 0
	DB7	0x47	CRC-8 Check Value

7.2.3 Format C

Format C consists of one frame of message, including a 24-bit current value, an 16-bit temperature value, a 4-bit cyclic counter, a 2-bit status bit, a 1-bit flag bit, an 8-bit check bit and a 9-bit reserved bit. The details of the message are shown in Table 7-8, Examples of message and decoding information are shown in Table 7-9 and Table 7-10.

Table 7-8. Format C Message

Frame Type	CANID	Length	byte0	byte1	byte2	byte3	byte4	byte5	byte6	byte7
Current (mA) Temperature (0.1°C)	0x03C2	8	B[7:4]: Cyclic Counter ^[1] B[3:2]: Malfunction Status ^[2] B[1]: Hardware Fault Flag ^[3] B[0]:Reserved Bit ^[4]	24- Curre C	bit Unsign nt Value x800000	ned Offset ⑸	16-bit S Tempe Val	igned erature ue ^[6]	Reserved Bit ^[4]	CRC-8Check SAEJ1850 ^[7]

[1] Cyclic Counter, 0x0-0xF cycle count value.

[2] Malfunction Status, '0': Normal; '1': ADC Conversion Error; '2': Current exceeds 1550A; '3': Shunt temperature exceeds 150 °C or PC BA temperature exceeds 125 °C.

[3] Hardware Fault Flag, active when a hardware fault is detected, indicates that the ADC may have a fault.

[4] Reserved bit, default is 0.

[5] 24-bit current data uses big-endian by default. The high bit is followed by the low bit. It is an unsigned integer. Unit: mA

The actual value is expressed as V=D-0x800000. D is the value in the message.

[6] 16-bit temperature data uses big-endian by default. The high bit is followed by the low bit. It is a signed integer. Unit: °C.

[7] CRC-8 Check generates a check code for the first 7 bytes of data.

	Table 7-9. Examples of Format C Message Frame									
Example	D B 0	DB1	DB2	D B3	DB4	DB5	DB6	DB7		
1	0x00	0x80	0x03	0xE8	0x01	0x0A	0x00	0x2E		
2	0x00	0x7F	0xFC	0x18	0xFE	0xF6	0x00	0x9D		

Table 7-10. Decoding Information of Table 7-9 Examples

Example	Byte	Value	Message
	D B0	0x00	Cycle sequence 0, normal function, no hardware fault, reserved bit 0
	D B1- D B3	0x8003E8	Current: 1000mA, i.e. + 1A
1	D B4- D B5	0x010A	The Temperature is + 26.6 °C
	D B6	0x00	Reserved bit 0
	DB7	0x2E	CRC-8 C heck Value
	D B0	0x00	Cycle sequence 0, normal function, no hardware fault, reserved bit 0
	DB1-DB3	0x7FFC18	Current: -1000mA, i.e1A
2	D B4- D B5	0xFEF6	The Temperature is - 26.6 °C
	D B6	0x00	Reserved bit 0
	DB7	0x9D	CRC-8 C heck Value

7.2.4 Format D

Format D consists of one frame of message, including a 32-bit current value, a 1-bit flag bit, a 7-bit status bit, an 8-bit software version, a 16-bit reserved byte and no temperature value. The details of the message are shown in Table 7-11, Examples of message and decoding information are shown in Table 7-12 and Table 7-13.

Table	7-11.	Format	D Mess	age
-------	-------	--------	--------	-----

Frame Type	CANID	Length	byte0	byte1	byte2	byte3	byte4	byte5	byte6	byte7
Current (mA)	0x03C0	8	3 01	2-bit Uns Current fset 0 x80	igned Value 000000 ^[1]		B[0]:Error Flag ^[2] B[7:1]: Error Status ^[3]	Rese Bit	rved	Software Version

[1] 32-bit current data uses big-endian by default. The high bit is followed by the low bit. It is an unsigned integer. Unit: mA. The actual value is expressed as V=D-0x80000000. D is the value in the message.

[2] Error Flag, '0': Normal; '1': Error;

[3] Error Status, 0x64: no error; 0x50: ADC hardware error; 0x51: ADC conversion error; 0x60: Temperature exceeds the limit (current value remains measured).

[4] Reserved bit, default is 0.

Table 7-12. Examples of Format D Message Frame

Example	D B 0	DB1	DB2	D B 3	DB4	DB5	DB6	DB7
1	0x080	0x00	0x03	0xE8	0xC8	0x00	0x00	0x64
2	0x7F	0xFF	0xFC	0x18	0xC8	0x00	0x00	0x64

Copyright@ShenzhenC&BElectronicsCo.,Ltd

Table 7-13. Decoding Information of Table 7-12 Examples

Example	Byte	Value	Message
	D B0- D B3	0x800003E8	Current: 1000mA, i.e. 1A
1	DB4	0xC8	N ormal, no error
I	D B5 - D B6	0x0000	Reserved bit 0
	DB7	0x64	Software version is V 1.00
	D B0- D B3	0x7FFFFC18	Current: -1000mA, i.e1A
2	DB4	0xC8	N ormal, no error
2	D B5 - D B6	0x0000	Reserved byte 0
	DB7	0x64	Software version is V 1.00

7.3 Bus Topology

CB600F8536A can be applied to a bus-type topology and transmits network information to each node through the bus, as shown in Figure 7-3.

Figure 7-3 CAN Bus Topology

7.4 Measuring Mode

7.4.1 Time Interval + Command Trigger Mode

The sensor samples data at a fixed time interval set by the system and sends message to the CAN bus. At the same time, It can also respond to the trigger command. In the sampling period, the measurement will be active immediately when the trigger command is received and sends message to CAN bus. No need to wait for next sampling interval. As shown in Figure 7-4.

After the sensor receives the trigger command, if it is sampling or sending CAN message, the p resent trigger command will be ignored. When the command is valid, a sampling and sending process will be started, and the time interval T for the next sending will be automatically calculated from the moment of this trigger. As Figure 7 - 4 shown, there is a delay between the sensor receiving a valid trigger command and sending the CAN message, which is less than 1 ms.

7.4.2 Command Triggered Mode

Under this mode, the sensor will not automatically send message, but keep sampling, calculating and filtering data at a fixed time interval. The sensor will send the recent sampling data to CAN bus and reset the start of time interval when a valid command is received from the host, as Figure 7 - 5 shown.

As Figure 7 - 5 shown, the sensor sends data to the CAN bus after receiving at rigger command from the host, with a delay of less that 1 ms between receiving the command and sending the data.

CB_AMC_UM - SEPTEMBER 2023

8、Mechanical Structure

8.1 Dimensions

Figure 8.1 Structure Diagram

8.2 Copper Bar Connection

- Recommended Bolts: M8
- Recommended Torque:15- 20Nm
- Recommended Width * Thickness of Copper Bar:40mm*3mm
- Recommended Length of Overlap between Shunt and Copper Bar:20mm
- Do not use a flat washer between the copper bar and the shunt
- Keep the surface of shunt and copper bar clean and free of scratches

Figure 8-2. CB600F8536A Copper Bar Connection Diagram

8.3 Connector

Connector	Manufacturer	Pin Count	Part#
Male Connector ^[1]	Molex	4	5600200420
Recommended Female Connector ^[2]	Molex	4	5601230400

Figure 8-3. Male Connector

Figure 8-4. Female Connector (Wire end reference)

[1] For more information about male connector, please refer to Molex datasheet: https://www.molex.com/pdm_docs/sd/5600200420_sd.pdf [2] For more information about female connector, please refer to Molex datasheet : https://www.molex.com/pdm_docs/sd/5601230400_sd.pdf

8.4 Connector Definition

Pin N o.	Description
Pin4	VCC
Pin3	CAN_L
Pin2	CAN_H
Pin1	GND

Figure 8-5. Male Connector Molex5600200420

9、Typical Applications

CB600F8536A^[1]is used for accurate current measurement in key system. It is recommended that the current sensor connects to the circuit of positive or negative electrode of high-voltage end^[2], as shown in Figure 9-1 and Figure 9-2, to sample the current in the main circuit. The high and low voltage ends are galvanic isolated inside the sensor. It is recommended that the low voltage end connects to the battery management system, as shown in Figure 9-3, for real-time and accurate reporting of current data in key system.

Figure 9-1. Recommended Use of Positive Electrode of High-Voltage End

Figure 9-2. Recommended Use of Negative Electrode of High-Voltage End

Figure 9-3. Recommended Use of Low-Voltage End

 [1] The "+" on the CB600F8536A current sensor housing is the direction of current entry, that is, the positive current direction.
 [2] The high voltage electrode is installed as shown in the figure. The operating condition indicated by the sensor output value is: When the sensor outputs positive value, the battery pack is discharging; When the sensor outputs negative value, the battery pack is charging.

10、Storage & Packaging

10.1 Storage

- Recommended storage at room temperature.
- The storage environment shall be clean, tidy, dry and free of harmful gases, and the packaging case shall be protected from direct sunlight.
- Anti-static bracelet or anti-static gloves shall be worn during installation, storage and handling.

10.2 Packaging

10.2.1 General Information

Packaging Element	Specifications			
SN P ^[1]	150			
Container Name	Carton			
Container Size	480*410*282	mm		
Unit Weight of Finished Product	100±5	g		

[1] SNP, Standard Number of Package

10.2.2 Auxiliary Materials Information

N o.	Materials	Size L*W *H(mm)	Quantity
1	1 50-Grid EPE Tray		3
2	EPE Tray Cover	460*390*10	1
3	Anti-Static PE Bag	200*150	150
4	Anti-Static PE Accordion Bag	900*510	1

Figure 10-1. Carton Diagram

Figure 10-2. Structure Diagram of EPE

11、Part Number Information

	CB	600	F	8536	A	1	S	S	NN
Series									
CB: C& B Current Sensor									
Rated Current									
350: 350A 600: 600A 1000: 1000A									
Tolerance									
B: 0.05% F: 0.1% L: 0.2% M: 0.5% K: 1%									
Shunt Size									
6918:69mm×18mm 8518:85mm×18mm 8436:84mm×36mm 8536:85mm×36mm									
Application Grade									
A: CAN Automotive I: CAN Industrial T: 485 Industrial									
Туре									
0: Standard, Thickness 4mm 1: Standard, Thickness 3mm 2: C ustomized									
Special Byte									
Standard Κ:25μΩ S:50μΩ Ρ:100μΩ J:150μΩ									
Customized Custom Byte, 0~9, A~Z									
Special Byte									
Standard S:CAN Terminal Resistor N:No CAN Terminal Resistor									
Customized Custom Byte , 0 ~ 9, A ~ Z									
Code									

NN:00~99 or Blank

For more performance options and other relevant information, please refer to the official website: https://en.resistor.today/

CB600M8536A Series, Automotive, 0.5% Tolerance Operating Temperature -40°C~+105°C Shunt Based Current Sensor

1、Characteristics

- Current Sensing: Measurement Range: -20000A~+20000A - Continuous Operating Range: -600A~+600A
- Measurement Accuracy: ±0.5% (MAX)
- Resolution: 20mA
- Temperature Sensing: Measurement Range: -50°C~+150°C
- Measurement Error: ±3°C (MAX)
- Resolution: 0.1°C
- Communication Protocol:CAN2.0 A/B
- Selectable Data Format
- Configurable CAN ID
- Configurable CAN Speed: 250Kbps~1Mbps
- Supply Voltage:6VDC~18VDC
- Operating Temperature Range: -40°C~+105°C
- Power Consumption: ≤288mW @12VDC
- Galvanic Isolation: 3000VAC

2、Applications

Automotive Current Monitor
Grid Energy Storage

• UPS

Charging Station

3、Introduction

CB600M8536A current sensor is an automotive current sensing module, which can be used to measure bidirectional DC current. Featuring high accuracy, low power consumption, wide operating temperature range, excellent response speed, temperature stability and anti-interference ability.

The sensor is designed based on low-TCR shunt, adopts highprecision ADC, communicates through CAN2.0 A/B protocol, and has large ranges of current and temperature measurement capabilities, and current compensation at whole temperature range.

The sensor meets the operating temperature range of -40°C~+105°C, can apply to the continuous operating current of -600A~+600A at the whole temperature range, and the current measurement accuracy is no more than \pm 0.5% in the range of +20A~+600A or -600A~-20A.

Power supply of CB600M8536A current sensor is from 6VDC to 18VDC. Its power consumption is controlled below 288mW (12VDC), and it can realize complete high-low voltage isolation, which can be applied to the main positive electrode or the main negative electrode of the battery system.

SensorInformation

Part Number	er Shunt Thickness		Terminal Resistor
CB600M8536A1SS00	3mm	50μΩ	Yes
CB600M8536A1SN00	3mm	50μΩ	No

Pos-Relay

[1] For part numbers not included in the table, please contact us for technical support.

Typical A pplication

で記録 では、 This datasheet provides CB600M8536A current sensor reliability data and design suggestions. For the latest information of the datasheet and more RESI products, please visit www.resistor.today. Before actual design, please refer to the latest version of CB600M8536A current sensor datasheet.

Content

1. Characteristics	45
2、Applications	45
3.Introduction	45
4、Revision	46
5、Specifications	47
5.1 Limit Parameters	47
5.2 General Parameters	47
5.3 Typical Characteristic Curve	49
6、Test Standards	53
7、Communication	55
7.1 CAN Protocol	56
7.2 Data Frame	56

7.3 Bus Topology	
7.4 Measuring Mode	
8、Mechanical Structure	62
8.1 Dimensions	
8.2 Copper Bar Connection	62
8.3 Connector	
8.4 Connector Definition	63
9、Typical Applications	64
10、Storage & Packaging	65
10.1 Storage	65
10.2 Packaging	65
11、Part Number Information	66

4、Revision

Date	Revised Content	Note
2023.01	/	A0
2023.04.06	Flat washer is removed in Copper Bar Connection Diagram	A1
2023.08.31	Change the product packaging	A2
2023.09.14	Modify limit parameters of CAN, format B of data frame, order of connector pin and start-up time test curve	A3

5、Specifications

5.1 Limit Parameters

Note: Product will affect its reliability and cause unexpected permanent damage if operating under limit parameters for long time.

Parameter	Condition	Min.	Typical	Max.	Unit
SupplyVoltage				30	VDC
	±1500A			30	S
	±1800A			25	S
Current Measurement Range	±2500A			15	S
	±3000A			10	s
	±20000A			50	ms
CANInterface	Configured 120Ω Terminal Resistor (Continuous Power Supply)			6	V
CANTILETIACE	ESD			8	KV
OperatingTemperature		-40		105	°C
Storage Temperature		-40		125	°C
Humidity				95	%RH

5.2 General Parameters

Test Conditions: Ambient Temperature 25 °C (Unless Otherwise Noted)

Parameter	Condition	Min.	Typical	Max.	Unit
Power Supply		-			
Supply Voltage		6	12	18	VDC
	6V	12	17	24	mA
Operating Current	12V	12	17	24	mA
	18V	12	17	24	mA
	6V	72	100	144	mW
Power Consumption	12V	144	200	288	mW
	18V	216	300	432	mW
Start-Up Time	Required time from power-on to sending the first frame valid message	100	130	150	ms
Current Measurement (- 40°	C~+105℃)				•
	-20A~+20A		±50	±100	mA
Δεσιμέρου	+ 20A~ + 600A or - 600A~ - 20A			±0.5	%
Accuracy	+ 600A~ + 3000A or - 3000A~ - 600A		±1	±2	%
	+ 3000A~ + 20000A or - 20000A~ - 3000A		±2	±5	%
	-600A~+600A		Continuous		
Duration	±1500A			25	s
Duration	±3000A			5	S
	±20000A			40	ms
Posolution	-600A~+600A		20		mA
Resolution	>600A or<-600A		100		mA
Linearity	-600A~+600A		±0.02		%
Linearity	>600A or <-600A		±0.2		%

CB600M8536A

CB_AMC_UM

Test Conditions: Ambient Temperature 25 °C (Unless Otherwise Noted)

Parameter	Condition	Min.	Typical	Max.	Unit
Temperature Measurement		•			
M easurement Range		- 50		150	°C
M easurement Error	-50°C~ + 150°C	- 3		3	°C
Resolution			0.1		°C
Power & Temperature Rise					
DCImpedance		45	50	55	μΩ
Inductance				3	nH
Temperature Rise	±600A@25°C Copper Bus Bar 40mm*3mm, 15Nm			60	°C
	±600A@85°C Copper Bus Bar 40mm*3mm, 15Nm			60	°C
Communication		•			
Protocol	CAN2.0A/B				
Communication Speed		250	500	1000	Kbps
Terminal Perister	With Terminal Resistor	108	120	132	Ω
	W ithout Terminal Resistor				
Output Rate of Current Message		10	10	1000	ms
Output Rate of Temperature Message		10	100	1000	ms
Isolation					
Galvanic Isolation			3000		VA C
Creepage D istance			6		mm
Clearance			4.5		mm

5 3 Typical Characteristic Curve

5.3.1 Start-Up Time Test Curve

Figure 5-1 Sample1 Start-Up Time Test Curve

Figure 5-3 Sample3 Start-Up Time Test Curve

Figure 5-5 Sample5 Start-Up Time Test Curve

Figure 5-7 Sample7 Start-Up Time Test Curve

XIII 4400 XIIII 4400 XIII 4400

Figure 5-2 Sample2 Start-Up Time Test Curve

Figure 5-4 Sample4 Start-Up Time Test Curve

Figure 5-6 Sample6 Start-Up Time Test Curve

Figure 5-8 Sample8 Start-Up Time Test Curve

[1] A channel acquires data of power supply, VCC and GND.

[2] B channel acquires data of CAN differential signal, CAN_H and CAN_L.

[3] ΔX is the time interval from power-on to sending the first frame valid message

5.3.2 O perating Current Test Curve

Figure 5-9 + 25°C Operating Current Curve

5.3.3 Overcurrent Test Curve

Figure 5-12 + 25°C Overcurrent Test Curve

5.3.4 Low-Current Accuracy Test Curve

Figure 5-13-40°C Low-Current Test Accuracy @Min. Current Error

Figure 5-15 + 25°C Low-Current Test Accuracy@Min. Current Error

Figure 5-17 + 105°C Low-Current Test Accuracy@Min. Current Error

Figure 5-14-40°C Low-Current Test Accuracy@Max. Current Error

Figure 5-16 + 25°C Low-Current Test Accuracy @ Max. Current Error

Figure 5-18 + 105°C Low-Current Test Accuracy@Max. Current Error

5.3.5 High-Current Accuracy Test Curve

Figure 5-23 +85°C High-Current Test Accuracy@Min. Current Error

6、Test Standards

Test No.	Test Standards	Test Items				
General inspection						
1	/	Appearance				
2	/	Dimension				
3	/	Weight				
4	/	Function Check				
Electrical lo	ads					
5	VW 80000	E-01 Long-term overvoltage				
6	VW 80000	E-02 Transient overvoltage				
7	VW 80000	E-03 Transient undervoltage				
8	VW 80000	E-04 Jump start				
9	VW 80000	E-05 Load dump				
10	VW 80000	E-06 Ripple voltage				
11	VW 80000	E-07 Slow decrease and increase of the supply voltage				
12	VW 80000	E-08 Slow decrease, quick increase of the supply voltage				
13	VW 80000	E-09 Reset behavior				
14	VW 80000	E-10 Brief interruptions				
15	VW 80000	E-11 Start pulses				
16	VW 80000	E-12 Voltage curve with vehicle electrical system control				
17	VW 80000	E-13 Pin interruption				
18	VW 80000	E-14 Connector interruption				
19	VW 80000	E-15 Reverse polarity				
20	VW 80000	E-16 Ground potential difference				
21	VW 80000	E-17 Short circuit in signal cable and load circuits				
22	VW 80000	E-18 Insulation resistance				
23	VW 80000	E-19 Quiescent current				
24	VW 80000	E-20 Dielectric strength				
25	/	Continuous power test				
26	ISO 7637-2:2011	CI pulse 1				
27	ISO 7637-2:2011	CI pulse 2a / 2b				
28	ISO 7637-2:2011	CI pulse 3a / 3b				
29	ISO 7637-2:2011	CI pulse 4				
30	ISO 7637-2:2011	CI pulse 5b				
31	ISO 10605:2008	ESD				
32	CISRP 25	Radiated emissions				
33	CISRP 25	Conducted emissions				
34	ISO 11452-2	Radiated immunity				
35	ISO 11452-4	Bulk current injection				

CB600M8536A
CB_AMC_UM

Test No.	Test Standards	Test Items		
Climatic load	ds			
36	VW 80000	K-01 High-/low-temperature aging		
37	VW 80000	K-02 Incremental temperature test		
38	VW 80000	K-03 Low-temperature operation		
39	VW 80000	K-05 Thermal shock (component).		
40	VW 80000	K-14 Damp heat, constant		
41	VW 80000	L-02 Service life test - high-temperature durability testing		
42	VW 80000	L-03 Service life test – Temperature cycle durability testing		
43	IEC 60068-2-30	Dew test		
44	GB/T 2423.34	Composite temeperature & humidity cyclic test		
Mechanical l	oads			
45	VW 80000	M-01 Free fall		
46	VW 80000	M-04 Vibration test		
47	VW 80000	M-05 Mechanical shock		
48	VW 80000	M-08 Protection against foreign bodies - IP0x to IP4x, A, B, C, D		
Regulation Validation				
49	GB/T 30512-2014	Requirements for prohibited substances on automobiles		
50	UL-94:2016	Vertical Burning Test		

7、Communication

7.1 CAN Protocol

CB600M8536A applies CAN2.0 A/B communication protocol and communicates through data frame. The data length of message frame is between 1-8 bytes. The default CAN speed is 500Kbps. 1Mbps/250Kbps are also available. There are two kinds of data frame, standard frame and extended frame, as shown in Figure 7-1 and Figure 7-2. Standard frame has an ID of 11 bytes, and the extended frame has an ID of 29 bytes. The defaulted data frame is standard frame, which can be adjusted to the extended frame. The defaulted data format is Motorola, which can be adjusted to Intel.

Figure 7-2 Extended Frame

7.2 Data Frame

The data frame of CB600M8536A can apply multiple data formats, as shown in Table 7-1. Among them, both formats A and B are composed of two frames of messages, which transmit real-time current and real-time temperature. Both formats C and D are composed of one frame of message. Format C transmits real-time current and real-time temperature in one frame of message. Format D only transmits real-time current. The data frame format defaults to format A.

Data Format Type	Data Frame Content	CANID ^[1]	Data Length	Characteristics
Format A	Real-Time Current	0x0301	6	32-bit current value is a signed integer. Available Unit: mA/μA
	Real-Time Temperature	0x0325	6	32-bit temperature value is a signed integer, in 0.1°C
Format D	Real-Time Current	0x03C2	8	24-bit current value is an unsigned integer with offset 0x800000, in mA
Format B	Real-Time Temperature	0x06C2	8	8-bit NTC temperature value is a signed short integer, in °C 8-bit MCU temperature value is a signed short integer, in °C
Format C	Real-Time Current & Temperature	0x03C2	8	24-bit current value is an unsigned integer with offset 0x800000, in mA 16-bit temperature value is a signed short integer. Unit: 0.1 ℃
Format D	Real-Time Current	0x03C0	8	32-bit current value is an unsigned integer with offset 0x80000000, in mA

[1] The CANID in the above table are default and can be modified by commands (refer to the relevant application documents for details)

7.2.1 Format A

Format A consists of current data frame and temperature data frame, each with a 4-bit cyclic counter and a 2-bit module exception flag. In addition, the current data frame has an 8-bit current channel flag, a 32-bit current value, a 1-bit unit selection and a 1-bit reserved bit. The temperature data frame has an 8-bit temperature channel flag, a 32-bit temperature value and a 2-bit reserved bit. The details of the message are shown in Table 7-2, Examples of message and decoding information are shown in Table 7-3 and Table 7-4.

Table	7-2.	Format A	Message

Frame Type	CANID	Length	byte0	byte1	byte2	byte3	byte4	byte5
Current (mA/µA)	0x0301	6	0x00 ^[1]	 B[7]: Reserved Bit⁽²⁾ B[6]: Current Unit⁽³⁾ B[5]: Measurement Error Flag⁽⁴⁾ B[4]: Overcurrent Flag⁽⁵⁾ B[3:0]: Cyclic Counter⁽⁶⁾ 	32-bit Signed Current Value ⁽⁷⁾			
Temperature (0.1°C)	0x0325	6	0x04 ^[8]	B[7:6]: Reserved Bit ^[2] B[5]: Overtemperature Flag of Shunt ^[9] B[4]:Overtemperature Flag of PCBA ^[10] B[3:0]: Cyclic Counter ^[6]	t ⁽⁹⁾ 3 ⁽¹⁰⁾ Tem			e ^[11]

[1] Current Channel Flag.

[2] Reserved bit, default is 0.

[3] Current Unit, 0: mA; 1: μA

[4] Measurement error flag, active when the ADC fault is detected, indicates that the current value is invalid. When alarming, the current sensor still sends and receives data messages, but the current value in the message is invalid. The measurement deviation may exceed the range specified in the technical specification.

[5] Overcurrent error flag. Default is inactive. It can be defined by the user.

[6] Cyclic Counter, 0x0-0xF cycle count value.

[7] 32-bit current data uses big-endian by default. The high bit is followed by the low bit. It is a signed integer.

[8] Temperature Channel Flag.

[9] Overtemperature Flag of Shunt, active when the shunt temperature is detected to be more than 150 °C, indicates that the sensor may have no message output or low accuracy. When alarming, the current sensor can still send and receive data messages in a short time, and the current value in the message is valid. If overtemperature for a long time, the performance of current sensor can be damaged. At this time, it is recommended to limit the output power of BMS.

[10] Overtemperature Flag of PCBA, active when the board temperature is detected to be more than 125 °C, indicates that the sensor may have no message output or low accuracy. When alarming, the current sensor can still send and receive data messages in a short time, and the current value in the message is valid. If overtemperature lasts for a long time, the performance of current sensor can be damaged. Then, it is recommended to limit the output power of BMS.

[11] 32-bit temperature data uses big-endian by default. The high bit is followed by the low bit. It is a signed integer. Unit: 0.1 °C

Example	D B 0	DB1	D B2	DB3	DB4	DB5
1	0×00	0x00	0x00	0x00	0x03	0xE8
2	0x00	0x00	0xFF	0×FF	0xFC	0x18
3	0x04	0x00	0x00	0x00	0x01	0x0A
4	0x04	0x00	0xFF	0xFF	0×FE	0xF6

Table 7-3. Examples of Format A Message Frame

Table 7-4. Decoding Information of Table 7-3 Examples

Example	Byte	Value	Message
	D B0		Current Channel Flag.
1	DB1	0x00	Reserved bit 0, unit: mA, no measurement error, cycle sequence 0
	D B2- D B5	0x000003E8	Current: 1000mA, i.e. 1A
	D B0	0x00	Current Channel Flag.
2	DB1	0x00	Reserved bit 0, unit: mA, no measurement error, cycle sequence 0
D	D B2- D B5	0xFFFFFC18	Current: -1000mA, i.e1A
	D B0	0x04	Temperature Channel Flag.
3	DB1	0x00	Reserved bit 0, Shunt temperature $<\!150^\circ\!C$, PCBA temperature $<\!125^\circ\!C$, cycle sequence 0
	D B2- D B5	0x000010A	The Temperature is + 26.6 °C
	D B0	0x04	Temperature Channel Flag.
4	DB1	0x00	Reserved bit 0, Shunt temperature $<\!150^\circ\!C$, PCBA temperature $<\!125^\circ\!C$, cycle sequence 0
	D B2- D B5	0xFFFFFEF6	The Temperature is - 26.6 °C

7.2.2 Format B

Format B consists of current data frame and temperature data frame, each with a 4-bit cyclic counter. In addition, the current data frame has a 24-bit current value, a 2-bit flag bit, an 8-bit software version, an 8-bit check bit and an 18-bit reserved bit. The temperature data frame has an 8-bit temperature value, a 4-bit status bit, an 8-bit check bit and a 32-bit reserved bit. The details of the message are shown in Table 7-5, Examples of message and decoding information are shown in Table 7-6 and Table 7-7.

Frame Type	CANID	Length	byte0	byte1	byte2	byte3	byte4	byte5	byte6	byte7
Current (mA)	0x03C2	8	B[7:4]: Cyclic Counter ^[1] B[3:2]:Reserved Bit ^[2] B[1]: Hardware Fault Flag ^[3] B[0]:ADC conversion error ^[4]	24- Cu Offs	oit Unsigr urrent Val et 0 x 8000	ned ue)00 ^[5]	Reserve	d Bit ^[2]	Software Version	CRC-8Check SAEJ1850 ^[6]
Temperature (°C)	0x06C2	8	B[7:4]: Cyclic Counter ^[1] B[3]:SHUNT over temperature flag ^[7] B[2]:PCBA over temperature flag ^[8] B[1]:SHUNT temperature measurement error flag. ^[9] B[0]:PCBA temperature measurement error flag ^[10]	SHUNT (°C) [11]	PCBA (°C) [12]		Reserv	ed Bit ^[2]		CRC-8Check SAEJ1850 ⁽⁶⁾

Table 7-5. Format B M essage

CB_AMC_UM

[1] Cyclic Counter, 0x0-0xF cycle count value.

[2] Reserved bit, default is 0.

[3] Hardware Fault Flag, active when a hardware fault is detected, indicates that the ADC may have a fault.

[4] ADC conversion error flag. When ADC sampling timeout exceeded, indicating the present current value is invalid. When flag occurs,

the sensor can still receive and send message, but the current value of the message is invalid. The measured value may be out of the specifications range.

[5] 24-bit current data uses big-endian by default. The high bit is followed by the low bit. It is an unflaged integer. Unit: mA

The actual value is expressed as V=D-0x800000. D is the value in the message.

[6] CRC-8 Check generates a check code for the first 7 bytes of data.

[7] SHUNT over temperature flag. When measured temperature of SHUNT is over 150°C, it will be no message or measurement accuracy decreased.

When flag occurs, the sensor can still receive and send message in a short period and the current value in the message is normal.

If the sensor is over temperature for a long time, it could affect the functions of the sensor. It is recommended to derate BMS output power.

[8] PCBA over temperature flag. When measured temperature of PCBA is over 125°C, it will be no message or measurement accuracy decreased.

 $When flag \ occurs, the \ sensor \ can \ still \ receive \ and \ send \ message \ in \ a \ short \ period \ and \ the \ current \ value \ in \ the \ message \ is \ normal.$

If the sensor is over temperature for a long time, it could affect the functions of the sensor. It is recommended to derate BMS output power.

 $[10] \, {\sf PCBA} \, temperature \, measurement \, error \, flag. \, {\sf Sign} \, {\sf sets} \, {\sf when} \, {\sf SHUNT} \, temperature \, {\sf measurement} \, is \, {\sf error}.$

[11] SHUNT temperature, 8-bit temperature data by default unflaged integers. Unit: °C. The actual value expression is V=D-55. D is the value in the message. [12] PCBA temperature, 8-bit temperature data by default unflaged integers. Unit: °C. The actual value expression is V=D-55. D is the value in the message.

Table 7-6. Examples of Format B Message Frame								
Example	DB0	DB1	DB2	D B 3	DB4	DB5	DB6	DB7
1	0x00	0x80	0x03	0xE8	0x00	0x00	0x64	0x83
2	0x00	0x7F	0xFC	0x18	0x00	0x00	0x64	0xAB
3	0x00	0x1A	0x1A	0x00	0x00	0x00	0x00	0xD5
4	0x00	0xE6	0xE6	0x00	0x00	0x00	0x00	0x47

Table 7-6. Examples of Format B Message Frame

Table 7-7. Decoding Information of Table 7-6 Examples

Example	Byte	Value	Message
	DB0	0x00	Cycle sequence 0, reserved bit 0, no hardware fault, No ADC conversion error
	DB1-DB3	0x8003E8	Current: 1000mA, i.e. + 1A
1	DB4-DB5	0x0000	Reserved bit 0
	DB6	0x64	Software version is V 1.00
	DB7	0x83	CRC-8 Check Value
	DB0	0x00	Cycle sequence 0, reserved bit 0, no hardware fault, No ADC conversion error
	DB 1- D B3	0x7FFC18	Current: -1000mA, i.e1A
2	DB4-DB5	0x0000	Reserved bit 0
	DB6	0x64	Software version is V 1.00
	DB7	0 x A B	CRC-8 Check Value
	DB0	0x00	Cycle sequence 0, normal SHUNT & PCBA temperature, normal SHUNT & PCBA temperature
	DB1	0x1A	SHUNT :+ 26°C
3	DB2	0x1A	PCBA : + 26°C
	D B3- D B6	0x00000000	Reserved bit 0
	DB7	0xD5	CRC-8 Check Value
	DB0	0x00	Cycle sequence 0, normal SHUNT & PCBA temperature, normal SHUNT & PCBA temperature
	DB1	0xE6	SHUNT :- 26°C
4	DB2	0xE6	PCBA :- 26°C
	D B3- D B6	0x00000000	Reserved bit 0
	DB7	0x47	CRC-8 C heck Value

7.2.3 Format C

Format C consists of one frame of message, including a 24-bit current value, an 16-bit temperature value, a 4-bit cyclic counter, a 2-bit status bit, a 1-bit flag bit, an 8-bit check bit and a 9-bit reserved bit. The details of the message are shown in Table 7-8, Examples of message and decoding information are shown in Table 7-9 and Table 7-10.

Table 7-8. Format C Message

						-					
FrameType CANID Length byte0		byte1 byte2 byte3		byte4	byte5	byte6	byte7				
	Current (mA) Temperature (0.1°C)	0x03C2	8	B[7:4]: Cyclic Counter ^[1] B[3:2]: Malfunction Status ^[2] B[1]: Hardware Fault Flag ^[3] B[0]:Reserved Bit ^[4]	24- Curre C	bit Unsig nt Value x800000	ned Offset	16-bit S Tempe Val	igned trature ue ^[6]	Reserved Bit ^[4]	CRC-8Check SAEJ1850 ^[7]

[1] Cyclic Counter, 0x0-0xF cycle count value.

[2] Malfunction Status, '0': Normal; '1': ADC Conversion Error; '2': Current exceeds 1550A; '3': Shunt temperature exceeds 150 °C or PCBA temperature exceeds 125 °C.

[3] Hardware Fault Flag, active when a hardware fault is detected, indicates that the ADC may have a fault.

[4] Reserved bit, default is 0.

[5] 24-bit current data uses big-endian by default. The high bit is followed by the low bit. It is an unsigned integer. Unit: mA

The actual value is expressed as V=D-0x800000. D is the value in the message.

[6] 16-bit temperature data uses big-endian by default. The high bit is followed by the low bit. It is a signed integer. Unit: °C.

[7] CRC-8 Check generates a check code for the first 7 bytes of data.

	Table 7-9. Examples of Format C Message Frame										
Example	D B 0	DB1	DB2	D B3	DB4	DB5	DB6	DB7			
1	0x00	0x80	0x03	0xE8	0x01	0x0A	0x00	0x2E			
2	0x00	0x7F	0xFC	0x18	0xFE	0xF6	0x00	0x9D			

Table 7-10. Decoding Information of Table 7-9 Examples

Example	Byte	Value	Message
	D B0	0x00	Cycle sequence 0, normal function, no hardware fault, reserved bit 0
	DB1-DB3	0x8003E8	Current: 1000mA, i.e. + 1A
1	D B4- D B5	0x010A	The Temperature is + 26.6 °C
	D B6	0x00	Reserved bit 0
	DB7	0x2E	CRC-8 Check Value
	D B0	0x00	Cycle sequence 0, normal function, no hardware fault, reserved bit 0
	DB1-DB3	0x7FFC18	Current: -1000mA, i.e1A
2	D B4- D B5	0xFEF6	The Temperature is - 26.6 °C
	D B6	0x00	Reserved bit 0
	DB7	0x9D	CRC-8 C heck Value

7.2.4 Format D

Format D consists of one frame of message, including a 32-bit current value, a 1-bit flag bit, a 7-bit status bit, an 8-bit software version, a 16-bit reserved byte and no temperature value. The details of the message are shown in Table 7-11, Examples of message and decoding information are shown in Table 7-12 and Table 7-13.

Table	7-11.	Format	D Message
-------	-------	--------	-----------

Frame Type	CANID	Length	byte0	byte1	byte2	byte3	byte4	byte5	byte6	byte7
Current (mA)	0x03C0	8	3 01	2-bit Uns Current fset 0 x80	igned Value 000000 ^[1]		B[0]:Error Flag ^[2] B[7:1]: Error Status ^[3]	Rese Bit	rved	Software Version

[1] 32-bit current data uses big-endian by default. The high bit is followed by the low bit. It is an unsigned integer. Unit: mA. The actual value is expressed as V=D-0x80000000. D is the value in the message.

[2] Error Flag, '0': Normal; '1': Error;

[3] Error Status, 0x64: no error; 0x50: ADC hardware error; 0x51: ADC conversion error; 0x60: Temperature exceeds the limit (current value remains measured).

[4] Reserved bit, default is 0.

Table 7-12. Examples of Format D Message Frame

Example	D B 0	DB1	DB2	D B 3	DB4	DB5	DB6	DB7
1	0x080	0x00	0x03	0xE8	0xC8	0x00	0x00	0x64
2	0x7F	0xFF	0xFC	0x18	0xC8	0x00	0x00	0x64

Copyright @ Shenzhen C & B Electronics Co., Ltd

Table 7-13. Decoding Information of Table 7-12 Examples

Example	Byte	Value	Message
	D B0- D B3	0x800003E8	Current: 1000mA, i.e. 1A
1	DB4	0xC8	N ormal, no error
	D B5 - D B6	0x0000	Reserved bit 0
	DB7	0x64	Software version is V 1.00
	D B0- D B3	0x7FFFFC18	Current: -1000mA, i.e1A
2	DB4	0xC8	N ormal, no error
2	D B5 - D B6	0x0000	Reserved byte 0
	DB7	0x64	Software version is V 1.00

7.3 Bus Topology

CB600M8536A can be applied to a bus-type topology and transmits network information to each node through the bus, as shown in Figure 7-3.

Figure 7-3 CAN Bus Topology

7.4 Measuring Mode

7.4.1 Time Interval + Command Trigger Mode

The sensor samples data at a fixed time interval set by the system and sends message to the CAN bus. At the same time, It can also respond to the trigger command. In the sampling period, the measurement will be active immediately when the trigger command is received and sends message to CAN bus. No need to wait for next sampling interval. As shown in Figure 7-4.

After the sensor receives the trigger command, if it is sampling or sending CAN message, the p resent trigger command will be ignored. When the command is valid, a sampling and sending process will be started, and the time interval T for the next sending will be automatically calculated from the moment of this trigger. As Figure 7 - 4 shown, there is a delay between the sensor receiving a valid trigger command and sending the CAN message, which is less than 1 ms.

7.4.2 Command Triggered Mode

Under this mode, the sensor will not automatically send message, but keep sampling, calculating and filtering data at a fixed time interval. The sensor will send the recent sampling data to CAN bus and reset the start of time interval when a valid command is received from the host, as Figure 7 - 5 shown.

As Figure 7 - 5 shown, the sensor sends data to the CAN bus after receiving at rigger command from the host, with a delay of less that 1 ms between receiving the command and sending the data.

8、Mechanical Structure

8.1 Dimensions

Figure 8.1 Structure Diagram

8.2 Copper Bar Connection

- Recommended Bolts : M 8
- Recommended Torque:15- 20Nm
- Recommended Width * Thickness of Copper Bar:40mm*3mm
- Recommended Length of Overlap between Shunt and Copper Bar:20mm
- Do not use a flat washer between the copper bar and the shunt
- Keep the surface of shunt and copper bar clean and free of scratches

Figure 8-2. CB600M8536A Copper Bar Connection Diagram

8.3 Connector

Connector	Manufacturer	Pin Count	Part #
Male Connector ^[1]	Molex	4	5600200420
Recommended Female Connector ^[2]	Molex	4	5601230400

Figure 8-3. Male Connector

Figure 8-4. Female Connector (Wire end reference)

[1] For more information about male connector, please refer to Molex datasheet: https://www.molex.com/pdm_docs/sd/5600200420_sd.pdf [2]For more information about female connector, please refer to Molex datasheet : https://www.molex.com/pdm_docs/sd/5601230400_sd.pdf

8.4 Connector Definition

Pin N o.	Description
Pin4	VCC
Pin3	CAN_L
Pin2	CAN_H
Pin1	GND

Figure 8-5. Male Connector Molex5600200420

9、Typical Applications

CB600M8536A^[1]is used for accurate current measurement in key system. It is recommended that the current sensor connects to the circuit of positive or negative electrode of high-voltage end^[2], as shown in Figure 9-1 and Figure 9-2, to sample the current in the main circuit. The high and low voltage ends are galvanic isolated inside the sensor. It is recommended that the low voltage end connects to the battery management system, as shown in Figure 9-3, for real-time and accurate reporting of current data in key system.

Figure 9-1. Recommended Use of Positive Electrode of High-Voltage End

Figure 9-2. Recommended Use of Negative Electrode of High-Voltage End

Figure 9-3. Recommended Use of Low-Voltage End

 [1] The "+" on the CB600M8536A current sensor housing is the direction of current entry, that is, the positive current direction.
 [2] The high voltage electrode is installed as shown in the figure. The operating condition indicated by the sensor output value is: When the sensor outputs positive value, the battery pack is discharging; When the sensor outputs negative value, the battery pack is charging.

10、Storage & Packaging

10.1 Storage

- Recommended storage at room temperature.
- The storage environment shall be clean, tidy, dry and free of harmful gases, and the packaging case shall be protected from direct sunlight.
- Anti-static bracelet or anti-static gloves shall be worn during installation, storage and handling.

10.2 Packaging

10.2.1 General Information

PackagingElement	Specifications			
SN P ^[1]	15	0		
Container Name	Carton			
Container Size	480*410*282	mm		
Unit Weight of Finished Product	100±5	g		

[1] SNP, Standard Number of Package

10.2.2 Auxiliary Materials Information

Νο.	Materials	Size L*W *H(mm)	Quantity
1	50-Grid EPE Tray	468*398*86	3
2	EPE Tray Cover	460*390*10	1
3	Anti-Static PE Bag	200*150	150
4	Anti-Static PE Accordion Bag	900*510	1

Figure 10-1. Carton Diagram

Figure 10-2. Structure Diagram of EPE

11、Part Number Information

	СВ	600	M	8536	A	1	S	S	NN
Series									
CB: C& B Current Sensor									
RatedCurrent									
350: 350A 600: 600A 1000: 1000A									
Tolerance									
B: 0.05% F: 0.1% L: 0.2% M: 0.5% K: 1%									
Shunt Size									
6918:69mm×18mm 8518:85mm×18mm 8436:84mm×36mm 8536:85mm×36mm									
Application G rade									
A: CAN Automotive I: CAN Industrial T: 485 Industrial									
Туре									
0: Standard, Thickness 4mm 1: Standard, Thickness 3mm 2: C ustomized									
Special Byte									
Standard K:25μΩ S:50μΩ P:100μΩ J:150μΩ									
Customized Custom Byte, 0~9, A~Z									
Special Byte									
Standard S:CAN Terminal Resistor N:No CAN Terminal Resistor									
Customized Custom Byte , 0 ~ 9, A ~ Z									
Code									
NN : 00~99 or Blank									

For more performance options and other relevant information, please refer to the official website: https://en.resistor.today/

PCBS6918B100P2AC00, Automotive Operation Temperature -40 °C~+125 °C Shunt Based Current Sensing Module

1、Characteristics

- Continuous Operating Range: -350A~+350A
- Connector: Horizontal 4 PIN
- High Accuracy Current Measurement
- Real-Time Temperature Measurement
- Applicable to High Pulse Current
- Low TCR, Low Inductance, Low Thermal EMF
- Excellent Long-Term Stability
- Operating Temperature Range:-40°C~125°C

2、Applications

- BMS Current Measurement
- BDU/PDU Current Measurement

3、Introduction

PCBS6918B100P2AC00 is an automotive current sensing module used to assist in measuring bidirectional DC current. It has high accuracy, low TCR, low inductance, low thermal EMF, and excellent long-term stability and anti-interference ability.

This module is designed based on a low-TCR shunt, which is welded with PCBA and can be installed on the circuit through bolts. It is used to collect bus current and shunt temperature, and send the measured signal to the signal processing side of the user defined module. It can be customized according to the specific technical requirements.

Module Information

Shunt Size	Hole Diameter	Connector
69mm×18mm	7mm	5023520400

Content

1. Characteristics 6
2. Applications 6
3. Introduction 6
4. Revision 6
5. Specifications 6
5.1 Limit Parameters 6
5.2 General Parameters 6
6. Test Standards 7
7. Current Data 7
7.1 Temperature Compensation 7
7.2 Current Data Acquisition 7

8. Mechanical Structure 72
8.1 Structural Diagram72
8.2 Laser QR Code 72
8.3 Connector 73
8.4 Connector Definition73
8.5 Diagram of PCB 73
8.6 Copper Bar Connection73
9. Storage & Packaging74
9.1 Storage 74
9.2 Packaging74

4、Revision

Date	Note	Revised Content
2023.04.14	/	A0
2023.05.06	Revise the information of data matrix	A1
2023.09.21	Revise the derating curve	A2
2023.12.01	Revise the layout of datasheet	A3

5、Specifications

5.1Limit Parameters

Note: Product will affect its reliability and cause unexpected permanent damage if operating under limit parameters for long time.

Parameter	Condition	Min.	Typical	Max.	Unit
Current Measurement Range	±1000A			5	S
Operating Temperature		-40		125	°C
Storage Temperature		-40		125	°C
Humidity				95	%RH

[1] When operating temperature > 120°C, derating power is needed. The specific derating range refers to the figure below.

Ambient Temperature (°C)

5.2 General Parameters

Test Conditions: Ambient Temperature 25°C (Unless Otherwise Noted)

Parameter	Condition	Min.	Typical	Max.	Unit
Shunt					
Resistance			100		μΩ
Tolerance			±5		%
TCR	-40°C~+125°C		±100		ppm/°C
Continuous Operating Current			±350		А
Thermal EMF				3	μV/°C
Inductance				5	nH
Operating Temperature Range			-55°C~+175°C		°C
NTC					
Resistance			10		kΩ
Tolerance			±1		%
TCR	25/85°C		3434		K
Operating Temperature Range			-40°C~+150°C		°C
Capacitor					-
Capacitance			0.1		μF
Tolerance			±10		%
Rated Voltage			50		V
Operating Temperature Range			-55°C~+125°C		°C

CB_AMC_UM - DECEMBER 2023

6、Test Standards

Test No.	Test Standards	Test Items			
General inspection					
1	/	Appearance			
2	/	Dimension			
3	/	Weight			
4	/	Flatness of installation			
Electrical loads					
5	VW 80000-2021 5.4.20	E-18 Insulation resistance			
6	VW 80000-2021 5.4.22	E-20 Dielectric strength			
7	GB/T 6148-2005	Drift of temperature			
Climatic lo	Climatic loads				
8	GB/T 2423.2-2008	High temperature aging			
9	GBT 2423.1-2008	Low-temperature operation			
10	VW 80000:2021 5.6.5	K-05 Thermal shock (component)			
11	GB/T2423.50-2012 MIL-STD-202 Method 103	Damp heat, constant			
12	VW 80000:2021 5.8.3	L-03 Service life test – Temperature cycle durability testing			
13	GB/T 10125-2021	Salt spray			
Mechanical loads					
14	VW 80000-2021 5.5.1	M-01 Free fall			
15	VW 80000-2021 5.5.4	M-04 Vibration test			
16	VW 80000-2021 5.5.5	M-05 Mechanical shock			
Regulation Validation					
17	RoHS	Pb, Cd, Hg, Cr(V), PBBs, PBDEs			
18	REACH	CMR,PBT,vPvB			

7、Current Data

7.1 Temperature Compensation

PCBS6918B100P2AC00 applies temperature compensation to weaken the impact of ambient temperature changes on the shunt resistance. A fitting algorithm is used to compute a curve of the shunt resistance change with temperature, as shown in Figure 7-1.

Figure 7-1. R_{COMP} Temperature Characteristic Curve

As shown in Figure 7-1, the compensation factor R_{comp} temperature characteristic curve is:

 $R_{COMP} = A^*T^2 + B^*T + C$

Demonstration:

R_{COMP} : The drift of the shunt resistance relative to the change from initial temperature to present temperature, in ppm.

- T: Present Temperature of Shunt
- A : Coefficient of Quadratic Term T²
- B: Coefficient of Primary Term T
- C : Constant Term

Shunt resistance $R_{\rm t}$ at present temperature t, through temperature compensation:

 $R_t = R_0^* (1 + R_{COMP} / 10^6)^{[1]}$

[1] $R_{_0}$ is the initial resistance of shunt at lab environment, usually at +25 $^\circ$ C $\pm2^\circ$ C

[2] Figure 7-1 is only for illustration of this product. It is not the temperature characteristic curve for all products.

7.2 Current Data Acquisition

8、Mechanical Structure

8.1 Dimensions

8.2 Laser QR Code

8.2.1 Code Size

No.	Materials	Size L*W(mm)
1	PCB Cover Size	6*6
2	Data Matrix Size	5*5

8.2.2 Data Matrix

The content of the QR code includes date, serial number, and the actual resistance value

 $(Take 100 \ \mu\Omega for example, measurement is to three decimal places: 100.000 \ \mu\Omega, output as R100000n, if it is 99.000 \ \mu\Omega is R99000n)$

Content	Year	Month	Day	Module ID	R ₀ ^[1]	Coefficient A	Coefficient B	Constant Term C	
Format	YYYY	ММ	DD	XXXXX	Rxxxxxn or Rxxxxxn ^[2]	±x.xxxxxxxxx	±x.xxxxxxxxx	±x.xxxxxxxxx	
Example	2020	11	25	00001	R100123n R99123n	-0.000000576	+0.000086780 +0.998188760		
	If R≥100nΩ 2020112500001R100123n-0.000000576+0.000086780+0.998188760 If R<100nΩ 2020112500001R99123n-0.000000576+0.000086780+0.998188760 ^[3]								

 $[1]R_0$, the initial resistance of shunt at lab environment, usually at 25°C ± 2°C, in $\mu\Omega$.

[2] If $R \ge 100 \mu \Omega$, R_0 is expressed as Rxxxxxn.

If $R < 100 \mu\Omega$, R_0 is expressed as Rxxxxxn.

[3] If $R \ge 100 \mu \Omega$, the total number of characters is 57

If R < 100 $\mu\Omega$, the total number of characters is 56

8.3 Connector

Manufacturer	Pin Count	Part #	Structural Diagram
Molex	4	5023520400	

[1] Recommended female connector: 5023510400.

8.4 Connector Definition

No.	Pin No.	Code	Description	Structural Diagram
1	Pin 1	T1	Temperature Sensor Pin 1	
2	Pin 2	S+	Current Signal Positive	
3	Pin 3	S-	Current Signal Negative	
4	Pin 4	T2	Temperature Sensor Pin 2	

[1] Refer to the recommended current direction in the PCB Structural Diagram.

[3] Recommend Pin1 and Pin4 as twisted pair. Pin2 and Pin3 as twisted pair.

8.5 PCB Structural Diagram

Figure 8-1. PCB Structural Diagram

[1] The direction of current is related to the installation position of the PCBS product in the BDU, and is not related to the PCBS itself.

- [2] The positive and negative electrode of the PIN is determined by the direction of the current in the diagram.
- [3] Generally, battery discharge is considered positive and charging is considered negative.

8.6 Copper Bar Connection

- Recommended Bolts: M6
- Recommended Torque: 8-10Nm
- Recommended Width * Thickness of Copper Bar: 24mm*3mm
- Recommended Length of Overlap between Shunt and Copper Bar: 20mm
- Do not use a flat washer between the copper bar and the shunt
- Keep the surface of shunt and copper bar clean and free of scratches

Figure 8-2. Diagram

9.Storage & Packaging

9.1 Storage

- Recommended storage at room temperature.
- The storage environment shall be clean, tidy, dry and free of harmful gases. The packaging case shall be protected from direct sunlight.
- Anti-static bracelet or gloves shall be worn during installation, storage and handling.

9.2 Packaging

9.2.1 General Information

Packaging Element	Specifications		
SN P ⁽¹⁾	150		
Container	Carton		
Container Size	509*342*240 mm		

[1] SNP, Standard Number of Package

9.2.2 Auxiliary Materials Information

No.	Materials	Size L*W *H(mm)	Quantity	Recycle
1	50-Grid EPE Tray	496*328*61	3	No
2	EPE Tray Cover	495*325*5	4	No
3	Anti-Static PE Bag	900*510	1	No

Figure 9-1. Carton Diagram

Figure 9-2. Structure Diagram of EPE

PCBS8436P025T2AC00, Automotive Operation Temperature -40 °C~+125 °C Shunt Based Current Sensing Module

1. Characteristics

- Continuous Operating Range: -1000A~+1000A
- Connector: Horizontal 9 PIN
- High Accuracy Current Measurement
- Real-Time Temperature Measurement
- Applicable to High Pulse Current
- Low TCR, Low Inductance, Low Thermal EMF
- Excellent Long-Term Stability
- Operating Temperature Range:-40°C~125°C

2、Applications

- BMS Current Measurement
- BDU/PDU Current Measurement

3、Introduction

PCBS8436P025T2AC00 is an automotive current sensing module used to assist in measuring bidirectional DC current. It has high accuracy, low TCR, low inductance, low thermal EMF, and excellent long-term stability and anti-interference ability.

This module is designed based on a low-TCR shunt, which is welded with PCBA and can be installed on the circuit through bolts. It is used to collect bus current and shunt temperature, and send the measured signal to the signal processing side of the user defined module. It can be customized according to the specific technical requirements.

Module Information

Shunt Size	Hole Diameter	Connector	
84mm×36mm	8.3mm	5023520900	

255 睿思

Content

1. Characteristics 75
2.Applications 75
3.Introduction 75
4、Revision 76
5、Specifications 77
5.1 Limit Parameters 77
5.2 General Parameters 77
6、Test Standards 78
7.Current Data 79
7.1 Temperature Compensation 79
7.2 Current Data Acquisition 79

Mechanical Structure	80
8.1 Structural Diagram	80
8.2 Laser QR Code	80
8.3 Connector	81
8.4 Connector Definition	81
8.5 Diagram of PCB	81
8.6 Copper Bar Connection	81
Storage & Packaging	82
9.1 Storage	82
9.2 Packaging	82
	Mechanical Structure8.1 Structural Diagram8.2 Laser QR Code8.3 Connector8.4 Connector Definition8.5 Diagram of PCB8.6 Copper Bar ConnectionStorage & Packaging9.1 Storage9.2 Packaging

4、Revision

Date	Note	Revised Content
2022.10.28	/	AO
2023.05.09	The upper limit of operating temperature changed from +105°C to +125°C. Derating curve is added;	Al
2023.11.01	Complement connector definitions	A2
2023.11.13	Revise parameters	A3

5、Specifications

5.1Limit Parameters

Note: Product will affect its reliability and cause unexpected permanent damage if operating under limit parameters for long time.

Parameter	Condition	Min.	Typical	Max.	Unit
Current Measurement Range	±3000A			5	S
Operating Temperature		-40		125	°C
Storage Temperature		-40		125	°C
Humidity				95	%RH

[1] When operating temperature > 120°C, derating power is needed. The specific derating range refers to the figure below.

Ambient Temperature (°C)

5.2 General Parameters

Test Conditions: Ambient Temperature 25°C (Unless Otherwise Noted)

Parameter	Condition	Min.	Typical	Max.	Unit
Shunt (Component)					
Resistance			100		μΩ
Tolerance			±5		%
TCR	-40°C~+125°C		±100		ppm/°C
Continuous Operating Current			±1000		А
Thermal EMF				3	μV/°C
Inductance				5	nH
Operating Temperature Range			-55°C~+175°C		°C
NTC (Component)					
Resistance			10		kΩ
Tolerance			±1		%
TCR	25/85°C		3435		K
Operating Temperature Range			-50°C~+150°C		°C
PCBS (Assembly)					
Initial Resistance Tolerance	Scan the QR code on the product to obtain the initial resistance R ₀ ^[1]		±0.2		%

[1] $R_{\scriptscriptstyle 0}$ is the initial resistance of shunt at lab environment, usually at +25°C \pm 2°C

6、Test Standards

Test No.	Test Standards	Test Items	
General ins	spection		
1	/	Appearance	
2	/	Dimension	
3	/	Weight	
4	/	Flatness of installation	
Electrical l	oads		
5	VW 80000-2021 5.4.20	E-18 Insulation resistance	
6	VW 80000-2021 5.4.22	E-20 Dielectric strength	
7	GB/T 6148-2005	Drift of temperature	
Climatic loads			
8	GB/T 2423.2-2008	High temperature aging	
9	GBT 2423.1-2008	Low-temperature operation	
10	VW 80000:2021 5.6.5	K-05 Thermal shock (component)	
11	GB/T2423.50-2012 MIL-STD-202 Method 103	Damp heat, constant	
12	VW 80000:2021 5.8.3	L-03 Service life test – Temperature cycle durability testing	
13	GB/T 10125-2021	Salt spray	
Mechanica	lloads		
14	VW 80000-2021 5.5.1	M-01 Free fall	
15	VW 80000-2021 5.5.4	M-04 Vibration test	
16	VW 80000-2021 5.5.5	M-05 Mechanical shock	
Regulation	Validation		
17	RoHS	Pb, Cd, Hg, Cr(V), PBBs, PBDEs	
18	REACH	CMR,PBT,vPvB	

7、Current Data

7.1 Temperature Compensation

PCBS8436P025T2AC00 applies temperature compensation to weaken the impact of ambient temperature changes on the shunt resistance. A fitting algorithm is used to compute a curve of the shunt resistance change with temperature, as shown in Figure 7-1.

As shown in Figure 7-1, the compensation factor R_{comp} temperature characteristic curve is:

 $R_{COMP} = A^*T^2 + B^*T + C$

Demonstration:

R_{COMP} : The drift of the shunt resistance relative to the change from initial temperature to present temperature, in ppm.

- T: Present Temperature of Shunt
- A : Coefficient of Quadratic Term T²
- B: Coefficient of Primary Term T
- C : Constant Term

Shunt resistance $R_{\rm t}$ at present temperature t, through temperature compensation:

 $R_t = R_0^* (1 + R_{COMP} / 10^6)^{[1]}$

[1] $R_{_0}$ is the initial resistance of shunt at lab environment, usually at +25 $^\circ$ C $\pm2^\circ$ C

[2] Figure 7-1 is only for illustration of this product. It is not the temperature characteristic curve for all products.

7.2 Current Data Acquisition

8、Mechanical Structure

8.1 Dimensions

Figure 8.1 Structure Diagram

8.2 Laser QR Code

8.2.1 Code Size

No.	Materials	Size L*W(mm)
1	PCB Cover Size	7*7
2	Data Matrix Size	5*5

8.2.2 Data Matrix

The content of the QR code includes date, serial number, and the actual resistance value

(Take 100 $\mu\Omega$ for example, measurement is to three decimal places: 100.000 $\mu\Omega$, output as R100000n, if it is 99.000 $\mu\Omega$ is R99000n)

Content	Year	Month	Day	Module ID	R ₀ ^[1]	Coefficient A	Coefficient B	Constant Term C
Format	YYYY	ММ	DD	XXXXX	Rxxxxxn or Rxxxxxn ^[2]	±x.xxxxxxxxx	±x.xxxxxxxxx	±x.xxxxxxxxx
Example	2020	11	25	00001	R100123n R99123n	-0.000000576	+0.000086780	+0.998188760
	If $R \ge 100 n\Omega 2020112500001R100123n-0.000000576+0.000086780+0.998188760$ If $R < 100 n\Omega 2020112500001R99123n-0.000000576+0.000086780+0.998188760^{[3]}$							

 $[1]R_0$, the initial resistance of shunt at lab environment, usually at 25°C ± 2°C, in $\mu\Omega$.

[2] If $R \ge 100 \mu \Omega$, R_0 is expressed as Rxxxxxn.

If $R < 100 \mu\Omega$, R_0 is expressed as Rxxxxn.

[3] If R \geqslant 100 $\mu\Omega$, the total number of characters is 57

If R < 100 $\mu\Omega$, the total number of characters is 56

8.3 Connector

Manufacturer	Pin Count	Part #	Structural Diagram
Molex	9	5023520900	

[1] Recommended female connector: 5023510400.

8.4 Connector Definition

No.	Pin No.	Code	Description	Structural Diagram		
1	Pin 1	A+	Current Signal Group A Positive			
2	Pin 2	A-	Current Signal Group A Negative			
3	Pin 3	B+	Current Signal Group B Positive			
4	Pin 4	B-	Current Signal Group B Negative			
5	Pin 5	C+	Current Signal Group C Positive			
6	Pin 6	C-	Current Signal Group C Negative			
7	Pin 7	GND	Shunt Common Mode End			
8	Pin 8	T1	Temperature Sensor Pin 1			
9	Pin 9	T2	Temperature Sensor Pin 2			

[1] Refer to the recommended current direction in the PCB Structural Diagram.

[2] The recommended current sampling channel is Group C as the main channel and Group B & A as the auxiliary channel.

[3] Recommend Pin1 and Pin2 as twisted pair. Pin3 and Pin4 as twisted pair. Pin5 and Pin6 as twisted pair. Pin8 and Pin9 as twisted pair.

8.5 PCB Structural Diagram

Figure 8-1. PCB Structural Diagram

[1] The direction of current is related to the installation position of the PCBS product in the BDU, and is not related to the PCBS itself.

[2] The positive and negative electrode of the PIN is determined by the direction of the current in the diagram.

[3] Generally, battery discharge is considered positive and charging is considered negative.

8.6 Copper Bar Connection

- Recommended Bolts: M8
- Recommended Torque: 15-20Nm
- Recommended Width * Thickness of Copper Bar: 40mm*4mm
- Recommended Length of Overlap between Shunt and Copper Bar: 20mm
- Do not use a flat washer between the copper bar and the shunt
- Keep the surface of shunt and copper bar clean and free of scratches

Figure 8-2. 8436 Shunt Connection Diagram

9.Storage & Packaging

9.1 Storage

- Recommended storage at room temperature.
- The storage environment shall be clean, tidy, dry and free of harmful gases. The packaging case shall be protected from direct sunlight.
- Anti-static bracelet or gloves shall be worn during installation, storage and handling.

9.2 Packaging

9.2.1 General Information

Packaging Element	Specifications	
SN P ⁽¹⁾	150	
Container	Carton	
Container Size	509*342*240	mm

[1] SNP, Standard Number of Package

9.2.2 Auxiliary Materials Information

No.	Materials	Size L*W *H(mm)	Quantity	Recycle
1	50-Grid EPE Tray	496*328*61	3	No
2	EPE Tray Cover	495*325*5	4	No
3	Anti-Static PE Bag	900*510	1	No

Figure 9-1. Carton Diagram

Figure 9-2. Structure Diagram of EPE

PCBS8518A050P1SC00, Automotive Operation Temperature -40 °C~+125 °C Shunt Based Current Sensing Module

1、Characteristics

- Continuous Operating Range: -350A~+350A
- Connector: Horizontal 4 PIN
- High Accuracy Current Measurement
- Real-Time Temperature Measurement
- Applicable to High Pulse Current
- Low TCR, Low Inductance, Low Thermal EMF
- Excellent Long-Term Stability
- Operating Temperature Range:-40°C~125°C

2、Applications

- BMS Current Measurement
- BDU/PDU Current Measurement

3、Introduction

PCBS8518A050P1SC00 is an automotive current sensing module used to assist in measuring bidirectional DC current. It has high accuracy, low TCR, low inductance, low thermal EMF, and excellent long-term stability and anti-interference ability.

This module is designed based on a low-TCR shunt, which is welded with PCBA and can be installed on the circuit through bolts. It is used to collect bus current and shunt temperature, and send the measured signal to the signal processing side of the user defined module. It can be customized according to the specific technical requirements.

Module Information

Shunt Size	Hole Diameter	Connector
85mm×18mm	8.3mm	5023520400

Content

1. Characteristics 8
2.Applications 8
3.Introduction 8
4、Revision 8
5. Specifications 8
5.1 Limit Parameters 8
5.2 General Parameters 8
6、Test Standards 8
7、Current Data 8
7.1 Temperature Compensation 8
7.2 Current Data Acquisition 8

8. Mechanical Structure	88
8.1 Structural Diagram	88
8.2 Laser QR Code	88
8.3 Connector	89
8.4 Connector Definition	89
8.5 Diagram of PCB	89
8.6 Copper Bar Connection	89
9. Storage & Packaging	90
9.1 Storage	90
9.2 Packaging	90

4、Revision

Date	Note	Revised Content
2023.02	/	A0
2023.04.10 Revise the copper bar connection diagram.		A1
2023.09.20	2023.09.20 Revise the derating curve	
2023.12.05	Revise the layout of datasheet	A3

5、Specifications

5.1Limit Parameters

Note: Product will affect its reliability and cause unexpected permanent damage if operating under limit parameters for long time.

Parameter	Condition	Min.	Typical	Max.	Unit
Current Measurement Range	±1000A			5	S
Operating Temperature		-40		125	°C
Storage Temperature		-40		125	°C
Humidity				95	%RH

[1] When operating temperature>120°C, derating power is needed. The specific derating range refers to the figure below.

Ambient Temperature (°C)

5.2 General Parameters

Test Conditions: Ambient Temperature 25°C (Unless Otherwise Noted)

Parameter	Condition	Min.	Typical	Max.	Unit			
Shunt								
Resistance			100		μΩ			
Tolerance			±5		%			
TCR	-40°C~+125°C		±100		ppm/°C			
Continuous Operating Current			±350		А			
Thermal EMF				3	μV/°C			
Inductance				5	nH			
Operating Temperature Range		-55°C~+175°C		°C				
NTC								
Resistance			10		kΩ			
Tolerance		±1		%				
TCR	25/85°C	3435		K				
Operating Temperature Range		-50°C~+150°C		°C				

6、Test Standards

Test No.	Test Standards	Test Items					
General ins	General inspection						
1	/	Appearance					
2	/	Dimension					
3	/	Weight					
4	/	Flatness of installation					
Electrical l	oads						
5	VW 80000-2021 5.4.20	E-18 Insulation resistance					
6	VW 80000-2021 5.4.22	E-20 Dielectric strength					
7	GB/T 6148-2005	Drift of temperature					
Climatic lo	Climatic loads						
8	GB/T 2423.2-2008	High temperature aging					
9	GBT 2423.1-2008	Low-temperature operation					
10	VW 80000:2021 5.6.5	K-05 Thermal shock (component)					
11	GB/T2423.50-2012 MIL-STD-202 Method 103	Damp heat, constant					
12	VW 80000:2021 5.8.3	L-03 Service life test – Temperature cycle durability testing					
13	GB/T 10125-2021	Salt spray					
Mechanica	l loads						
14	VW 80000-2021 5.5.1	M-01 Free fall					
15	VW 80000-2021 5.5.4	M-04 Vibration test					
16	VW 80000-2021 5.5.5	M-05 Mechanical shock					
Regulation	Validation						
17	RoHS	Pb, Cd, Hg, Cr(V), PBBs, PBDEs					
18	REACH	CMR,PBT,vPvB					

7、Current Data

7.1 Temperature Compensation

PCBS8518A050P1SC00 applies temperature compensation to weaken the impact of ambient temperature changes on the shunt resistance. A fitting algorithm is used to compute a curve of the shunt resistance change with temperature, as shown in Figure 7-1.

Figure 7-1. R_{COMP} Temperature Characteristic Curve

As shown in Figure 7-1, the compensation factor R_{COMP} temperature characteristic curve is:

 $R_{COMP} = A^{T^2} + B^{T+C}$

Demonstration:

R_{COMP} : The drift of the shunt resistance relative to the change from initial temperature to present temperature, in ppm.

- T: Present Temperature of Shunt
- A : Coefficient of Quadratic Term T²
- B: Coefficient of Primary Term T
- C : Constant Term

Shunt resistance $R_{\rm t}$ at present temperature t, through temperature compensation:

 $R_t = R_0^* (1 + R_{COMP} / 10^6)^{[1]}$

[1] $R_{_0}$ is the initial resistance of shunt at lab environment, usually at +25 $^\circ$ C $\pm2^\circ$ C

[2] Figure 7-1 is only for illustration of this product. It is not the temperature characteristic curve for all products.

7.2 Current Data Acquisition

8、Mechanical Structure

8.1 Dimensions

Figure 8.1 Structure Diagram

8.2 Laser QR Code

8.2.1 Code Size

No.	Materials	Size L*W(mm)
1	PCB Cover Size	6*6
2	Data Matrix Size	5*5

8.2.2 Data Matrix

Content	Year	Month	Day	Module ID	R ₀ ^[1]	Coefficient A ^[2]	Coefficient B ^[3]	Constant Term C ^[4]
Format	YYYY	ММ	DD	XXXXX	RXXX.XXXX	±x.xxxxxxxx	±xxx.xxxxx	±xxxx.xxx
Evampla	2023	02	13	00001	R051.4912	-0.45837105	+130.48848	-2975.730
Litample		•	20)23021300001R	051.4912-0.458	37105+130.48848	3-2975.730 ^[5]	

 $[1]R_0$, the initial resistance of shunt at lab environment, usually at 25°C ± 2°C, rounded to 4 decimal places, in $\mu\Omega$.

[2] Coefficient A of Quadratic Term T^2 , rounded to 8 decimal places.

[3]Coefficient B of Primary Term T, rounded to 5 decimal places.

[4]Constant Term C, rounded to 3 decimal places.

[5] The total number of characters is 52.

8.3 Connector

Manufacturer	Pin Count	Part #	Structural Diagram
Molex	4	5023520400	

[1] 推荐对插母头型号:5023510400。

8.4 Connector Definition

No.	Pin No.	Code	Description	Structural Diagram
1	Pin 1	T1	Temperature Sensor Pin 1	
2	Pin 2	S+	Current Signal Positive	
3	Pin 3	S-	Current Signal Negative	
4	Pin 4	T2	Temperature Sensor Pin 2	

[1] Refer to the recommended current direction in the PCB Structural Diagram.

[2] Recommend Pin1 and Pin4 as twisted pair. Pin2 and Pin3 as twisted pair.

8.5 PCB Structural Diagram

BATTERY CATHODE

Figure 8-1. PCB Structural Diagram

[1] The direction of current is related to the installation position of the PCBS product in the BDU, and is not related to the PCBS itself.

- [2] The positive and negative electrode of the PIN is determined by the direction of the current in the diagram.
- [3] Generally, battery discharge is considered positive and charging is considered negative.

8.6 Copper Bar Connection

- Recommended Bolts: M8
- Recommended Torque: 15-20Nm
- Recommended Width * Thickness of Copper Bar: 24mm*3mm
- Recommended Length of Overlap between Shunt and Copper Bar: 20mm
- Do not use a flat washer between the copper bar and the shunt
- Keep the surface of shunt and copper bar clean and free of scratches

Figure 8-2. Shunt Connection Diagram

9.Storage & Packaging

9.1 Storage

- Recommended storage at room temperature.
- The storage environment shall be clean, tidy, dry and free of harmful gases. The packaging case shall be protected from direct sunlight.
- Anti-static bracelet or gloves shall be worn during installation, storage and handling.

9.2 Packaging

9.2.1 General Information

Packaging Element	Specifications		
SN P ⁽¹⁾	150		
Container	Car	ton	
Container Size	509*342*240	mm	

[1] SNP, Standard Number of Package

9.2.2 Auxiliary Materials Information

No.	Materials	Size L*W *H(mm)	Quantity	Recycle
1	50-Grid EPE Tray	496*328*61	3	No
2	EPE Tray Cover	495*325*5	4	No
3	Anti-Static PE Bag	900*510	1	No

Figure 9-1. Carton Diagram

Figure 9-2. Structure Diagram of EPE

PCBS8536P050T1SN00, Automotive Operation Temperature -40 °C~+125 °C Shunt Based Current Sensing Module

1、Characteristics

- Continuous Operating Range: -600A~+600A
- Connector: Horizontal 9 PIN
- High Accuracy Current Measurement
- Real-Time Temperature Measurement
- Applicable to High Pulse Current
- Low TCR, Low Inductance, Low Thermal EMF
- Excellent Long-Term Stability
- Operating Temperature Range:-40°C~125°C

2、Applications

- BMS Current Measurement
- BDU/PDU Current Measurement

3、Introduction

PCBS8536P050T1SN00 is an automotive current sensing module used to assist in measuring bidirectional DC current. It has high accuracy, low TCR, low inductance, low thermal EMF, and excellent long-term stability and anti-interference ability.

This module is designed based on a low-TCR shunt, which is welded with PCBA and can be installed on the circuit through bolts. It is used to collect bus current and shunt temperature, and send the measured signal to the signal processing side of the user defined module. It can be customized according to the specific technical requirements.

Module Information

Shunt Size	Hole Diameter	Connector
85mm×36mm	8.3mm	5023520900

255 睿思

Content

1. Characteristics	91
2. Applications	
3.Introduction	91
4、Revision	
5. Specifications	
5.1 Limit Parameters	
5.2 General Parameters	93
6、Test Standards	
7、Current Data	95
7.1 Temperature Compensat	ion 95
7.2 Current Data Acquisition	95

8. Mechanical Structure	96
8.1 Structural Diagram	96
8.2 Laser QR Code	96
8.3 Connector	97
8.4 Connector Definition	97
8.5 Diagram of PCB	97
8.6 Copper Bar Connection	97
9. Storage & Packaging	98
9.1 Storage	98
9.2 Packaging	98

4、Revision

Date	Note	Revised Content
2023.02	/	A0
2023.04.10	The upper limit of operating temperature changed from +105°C to +125°C. Derating curve is added; Flat washer is removed in Copper Bar Connection Diagram.	A1
2023.08.24	Revise the information of data matrix	A2
2023.11.02	Revise the derating curve	A3
2023.12.01	Revise the layout of datasheet	A4

5、Specifications

5.1Limit Parameters

Note: Product will affect its reliability and cause unexpected permanent damage if operating under limit parameters for long time.

Parameter	Condition	Min.	Typical	Мах.	Unit
Current Measurement Range	±3000A			5	S
Operating Temperature		-40		125	°C
Storage Temperature		-40		125	°C
Humidity				95	%RH

[1] When operating temperature >120°C, derating power is needed. The specific derating range refers to the figure below.

Ambient Temperature (°C)

5.2 General Parameters

Test Conditions: Ambient Temperature 25°C (Unless Otherwise Noted)

Parameter	Condition	Min.	Typical	Max.	Unit
Shunt					
Resistance			100		μΩ
Tolerance			±5		%
TCR	-40°C~+125°C		±100		ppm/°C
Continuous Operating Current			±600		А
Thermal EMF				3	μV/°C
Inductance				5	nH
Operating Temperature Range			-55°C~+175°C		°C
NTC					
Resistance			10		kΩ
Tolerance			± 1		%
TCR	25/85°C		3435		K
Operating Temperature Range			-50°C~+150°C		°C

6、Test Standards

Test No.	Test Standards	Test Items				
General inspection						
1	/	Appearance				
2	/	Dimension				
3	/	Weight				
4	/	Flatness of installation				
Electrical l	oads					
5	VW 80000-2021 5.4.20	E-18 Insulation resistance				
6	VW 80000-2021 5.4.22	E-20 Dielectric strength				
7	GB/T 6148-2005	Drift of temperature				
Climatic lo	ads					
8	GB/T 2423.2-2008	High temperature aging				
9	GBT 2423.1-2008	Low-temperature operation				
10	VW 80000:2021 5.6.5	K-05 Thermal shock (component)				
11	GB/T2423.50-2012 MIL-STD-202 Method 103	Damp heat, constant				
12	VW 80000:2021 5.8.3	L-03 Service life test – Temperature cycle durability testing				
13	GB/T 10125-2021	Salt spray				
Mechanica	lloads					
14	VW 80000-2021 5.5.1	M-01 Free fall				
15	VW 80000-2021 5.5.4	M-04 Vibration test				
16	VW 80000-2021 5.5.5	M-05 Mechanical shock				
Regulation	Validation					
17	RoHS	Pb, Cd, Hg, Cr(V), PBBs, PBDEs				
18	REACH	CMR,PBT,vPvB				

7、Current Data

7.1 Temperature Compensation

PCBS8536P050T1SN00 applies temperature compensation to weaken the impact of ambient temperature changes on the shunt resistance. A fitting algorithm is used to compute a curve of the shunt resistance change with temperature, as shown in Figure 7-1.

Figure 7-1. R_{COMP} Temperature Characteristic Curve

As shown in Figure 7-1, the compensation factor R_{COMP} temperature characteristic curve is:

 $R_{COMP} = A^{T^2} + B^{T+C}$

Demonstration:

R_{COMP} : The drift of the shunt resistance relative to the change from initial temperature to present temperature, in ppm.

- T: Present Temperature of Shunt
- A : Coefficient of Quadratic Term T²
- B: Coefficient of Primary Term T
- C : Constant Term

Shunt resistance $R_{\rm t}$ at present temperature t, through temperature compensation:

 $R_t = R_0^* (1 + R_{COMP} / 10^6)^{[1]}$

[1] $R_{_0}$ is the initial resistance of shunt at lab environment, usually at +25 $^\circ$ C $\pm2^\circ$ C

[2] Figure 7-1 is only for illustration of this product. It is not the temperature characteristic curve for all products.

7.2 Current Data Acquisition

8、Mechanical Structure

8.1 Dimensions

Figure 8.1 Structure Diagram

8.2 Laser QR Code

8.2.1 Code Size

No.	Materials	Size L*W(mm)
1	PCB Cover Size	10*10
	Data Matrix Size	9*9
2	PCB Cover Size	7*7
2	Data Matrix Size	6*6

8.2.2 Data Matrix

Code 1 :

Content	Year	Month	Day	Module ID	R ₀ ^[1]	Coefficient A ^[2]	Coefficient B ^[3]	Constant Term C ^[4]
Format	YYYY	ММ	DD	XXXXX	RXXX.XXXX	±x.xxxxxxxx	±XXX.XXXXX	\pm XXXX.XXX
Evample	2023	02	13	00001	R051.4912	-0.45837105	+130.48848	-2975.730
Lxample	2023021300001R051.4912-0.45837105+130.48848-2975.730 ^[5]							

 $[1]R_0$, the initial resistance of shunt at lab environment, usually at 25°C \pm 2°C, rounded to 4 decimal places, in $\mu\Omega$.

[2] Coefficient A of Quadratic Term T^2 , rounded to 8 decimal places.

[3]Coefficient B of Primary Term T, rounded to 5 decimal places.

[4]Constant Term C, rounded to 3 decimal places.

[5]The total number of characters is 52.

Code 2 :

Content	Part Number PIN	Hardware Version	Date	Serial Number	
Evampla	PCBS8536P050T1SN00	A2.0	B62	00001	
Litample	PCBS8536P050T1SN00V2.0B620001				

8.3 Connector

Manufacturer	Pin Count	Part #	Structural Diagram
Molex	9	5023520900	

8.4 Connector Definition

No.	Pin No.	Code	Description	Structural Diagram
1	Pin 1	Tl1	Temperature Sensor Pin 1	
2	Pin 2	Tl2	Temperature Sensor Pin 2	
3	Pin 3	SB+	Current Signal Group B Positive	
4	Pin 4	SA-	Current Signal Group A Positive	
5	Pin 5	SA+	Current Signal Group A Negative	
6	Pin 6	SB-	Current Signal Group B Negative	
7	Pin 7	GND	Shunt Common Mode End	1
8	Pin 8	Tr1	Temperature Sensor Pin 1	
9	Pin 9	Tr2	Temperature Sensor Pin 2	

[1] Refer to the recommended current direction in the PCB Structural Diagram.

[2] The recommended current sampling channel is Group C as the main channel and Group B as the auxiliary channel.

[3] Recommend Pin1 and Pin2 as twisted pair. Pin3 and Pin6 as twisted pair. Pin4 and Pin5 as twisted pair. Pin8 and Pin9 as twisted pair.

8.5 PCB Structural Diagram

Figure 8-1. PCB Structural Diagram

- [1] The direction of current is related to the installation position of the PCBS product in the BDU, and is not related to the PCBS itself.
- [2] The positive and negative electrode of the PIN is determined by the direction of the current in the diagram.

[3] Generally, battery discharge is considered positive and charging is considered negative.

8.6 Copper Bar Connection

- Recommended Bolts: M8
- Recommended Torque: 15-20Nm
- Recommended Width * Thickness of Copper Bar: 40mm*3mm
- Recommended Length of Overlap between Shunt and Copper Bar: 20mm
- Do not use a flat washer between the copper bar and the shunt
- Keep the surface of shunt and copper bar clean and free of scratches

Figure 8-2. 6918 Shunt Connection Diagram

9.Storage & Packaging

9.1 Storage

- Recommended storage at room temperature.
- The storage environment shall be clean, tidy, dry and free of harmful gases. The packaging case shall be protected from direct sunlight.
- Anti-static bracelet or gloves shall be worn during installation, storage and handling.

9.2 Packaging

9.2.1 General Information

Packaging Element	Specifications			
SN P ⁽¹⁾	150			
Container	Carton			
Container Size	509*342*240 mm			

[1] SNP, Standard Number of Package

9.2.2 Auxiliary Materials Information

No.	Materials	Size L*W *H(mm)	Quantity	Recycle
1	50-Grid EPE Tray	496*328*61	3	No
2	EPE Tray Cover	495*325*5	4	No
3	Anti-Static PE Bag	900*510	1	No

Figure 9-1. Carton Diagram

Figure 9-2. Structure Diagram of EPE

Enterprise WeChat QR code

C&B Electronics Shenzhen Co.Ltd

- Science 0755-82899519
- resi@cbeureka.com
- Floor 18, North Block 2, Baoneng S&T Park, Longhua, Shenzhen, China